b2c信息网

您现在的位置是:首页 > 昨日新闻 > 正文

昨日新闻

2019神木煤炭开采(神木煤炭产能)

hacker2022-06-25 13:50:29昨日新闻166
本文目录一览:1、陕西神木都有些什么煤矿和具体位置?2、神木煤碳预计开采多少年

本文目录一览:

陕西神木都有些什么煤矿和具体位置?

陕西神木县共有149座煤矿,其中国有重点煤矿13座,国有普通煤矿8座,乡镇煤矿128座。其中主要大矿有:凉水井矿;锦界矿;大柳塔矿;榆家梁矿;石圪台矿;柳塔矿;杨火盘矿;哈拉沟矿;红柳林;张家峁;宁条塔;大砭窑。小矿不计其数就不一一列举了。具体位置就是煤矿名称。

拓展资料:

神木市,隶属于陕西省榆林市,是“中国文明的前夜”——石峁遗址所在地,位于陕西北部、秦晋蒙三省接壤地带。总面积达7635平方千米,是陕西省面积最大的县级市。

截至2017年,神木市下辖15个镇,常住人口47.12万人,总人口54.2万人。2017年全市实现生产总值(GDP)1110.33亿元,按不变价计算,同比增长7.8%,增速较去年同期提高0.2个百分点。其中,一产完成13.41亿元,同比增长4.6%;二产完成777.96亿元,同比增长5.2%(其中规上工业增加值完成785.68亿元,同比增长4.9%);三产完成318.95亿元,同比增长13.6%。三次产业占比为1.21:70.06:28.73。全年人均地区生产总值239605元(常住人口口径)。

参考链接:百度百科词条 神木神木

神木煤碳预计开采多少年

2008年产量过亿吨,总的储量500亿吨,算上以后的开采能力增加等因素,200年是保守的吧。

陕西神木县煤矿名单

陕西神木县现已升为陕西省神木市

神木市煤矿名单:

神木河湾煤矿

神东天隆大海则煤矿

神木崔家沟煤矿

神木乌兰色太煤炭

神木隆德煤矿

神木县惠宝煤业

神木东川矿业煤炭

神木柳沟村办煤矿

神木老张沟煤矿

神木朝源煤矿

神木新窑煤业

神木河畔煤矿

神木阴湾煤矿

神木瑶渠煤矿

陕西黑龙沟矿业

神木鑫轮矿业

神木大湾煤矿

神木敖包沟煤矿

神木狼窝渠煤矿

神木石窑店煤矿

神木汇兴矿业

神木大砭窑煤矿

神木河西煤矿

陕西何家塔煤矿2号矿

神木市大柳塔镇板定梁煤矿

神木天瑞煤业

神木泰华煤业煤炭

陕西益东矿业有限责任公司

陕西神木煤业集团(草条沟)

陕西神木煤业集团(斗峁沟)

神木创威煤矿

神木高庄煤矿

神木嘉元煤业

神木红岩煤矿

神木东梁矿业

扩展资料:

构成煤炭有机质的元素主要有碳、氢、氧、氮和硫等,此外,还有极少量的磷、氟、氯和砷等元素。

碳、氢、氧是煤炭有机质的主体,占95%以上;煤化程度越深,碳的含量越高,氢和氧的含量越低。碳和氢是煤炭燃烧过程中产生热量的元素,氧是助燃元素。煤炭燃烧时,氮不产生热量,在高温下转变成氮氧化合物和氨,以游离状态析出。

硫、磷、氟、氯和砷等是煤炭中的有害成分,其中以硫最为重要。煤炭燃烧时绝大部分的硫被氧化成二氧化硫(SO2),随烟气排放,污染大气,危害动、植物生长及人类健康,腐蚀金属设备;当含硫多的煤用于冶金炼焦时,还影响焦炭和钢铁的质量。所以,“硫分”含量是评价煤质的重要指标之一。

煤中的无机物质含量很少,主要有水分和矿物质,它们的存在降低了煤的质量和利用价值。矿物质是煤炭的主要杂质,如硫化物、硫酸盐、碳酸盐等,其中大部分属于有害成分。

相传神木县以“神木”得名,其中有什么历史故事?

是革命时期订立的,应该没有典故

神木古称麟州,历史上曾是边关要塞,史称“南卫关中,北屏河套,左扼晋阳之险,右持灵夏之冲”。名扬青史的杨继业父子曾驻守于此,抗击侵略,雄踞一方,英雄业绩,流传千古。北宋著名的文学家范仲淹曾巡边到此,留下了《渔家傲·麟州秋词》等著名诗篇。神木也曾是革命老区,早在1927年就建立了党组织,1934年建立了红色政权——神府革命根据地,是全国少数几个坚持到全国解放的革命根据地之一。在这块英雄的土地上,成长了王瀛、汪铭、张友清、王兆卿、贾拓夫等一批民族英杰。

煤炭开发地质环境状况及其对能源开发的影响研究

一、煤炭赋存的地质环境状况

1.地质概况

地质学中的鄂尔多斯盆地是指中朝板块西部连片分布中生界(特别是二叠系和侏罗系)的广阔范围。长期以来,地质工作者把它看作是一个独立的、自成体系的中生代沉积盆地。本书所研究的鄂尔多斯能源基地的范围与地质学中的鄂尔多斯盆地范围基本一致,大致在北纬34°~41°20',东经105°30'~111°30'。具体的地理边界为东起吕梁山,西抵桌子山、贺兰山、六盘山一线。南到秦岭北坡,北达阴山南麓,跨陕西、甘肃、宁夏、内蒙古、山西5省(区)。面积约40万km2。

鄂尔多斯盆地是一个不稳定的克拉通内部盆地,盆地基底形成后,在其后的盖层发展演化过程中,先后经历了坳拉槽—克拉通坳陷(内部和周边)—板内多旋回的陆相盆地及其前渊—周边断陷等盆地原型的多次演化,现在的鄂尔多斯盆地是上述若干个盆地原型的叠加(孙肇才等,1990)。从中生界开始,基底地层对于盖层的影响就已经很不明显,并且表层褶皱在盆地内部也极不发育。所以盆地内中生界以上的地层产状大都比较平缓,断裂和裂隙比较少。

鄂尔多斯盆地的基底岩系分为两类,一类是由变粒岩岩相(麻粒岩、浅粒岩、混合花岗岩及片麻状花岗岩等)组成的太古宇;另一类是由绿岩岩相组成为主(绿片岩、千枚岩、大理岩和变质伪火山岩)的中古元古界。基底岩系之上的沉积盖层年代自中元古界至第三系(古、新近系),累积最大厚度超过10000m。其中,中古元古代在全盆地范围内沉积了厚达1500m的长城系石英砂岩和蓟县系合叠层石的硅质灰岩。早古生代在盆地中部沉积了400~700m的碳酸岩海相沉积,在南缘和西缘同期沉积达4500m。晚石炭至早二叠世早期,在本区形成了一个统一的以煤系地层为特征的滨海相沉积,沉积厚度为150~530m。晚三叠世盆地范围内部形成内陆差异沉降盆地,包括了5个明显的陆相碎屑岩沉积旋回,即晚三叠世延长组,早中侏罗世延安组、中侏罗世直罗-安定组、早白垩世志丹群下部及上部(孙肇才,1990)。早白垩世末期的燕山中期运动,导致本区同中国东部滨太平洋区一起,在晚白垩世至第三纪(古、新近系)期间,作为一个统一的受力单元,在开阔褶皱基础上发生大面积垂直隆起。就在这个隆起背景上,形成了环鄂尔多斯中生代盆地的以汾、渭、银川和河套为代表的新生代地堑系,并在其中沉积了厚达数千米至万米的以新第三系(新近系)为主的地堑型沉积。而盆地中心部位的晚白垩世至第三纪(古、新近纪)地层大面积缺失。

第四纪以来,鄂尔多斯盆地中南部大部分地区沉积了大厚度的黄土;而其北部却由于隆起剥蚀而没有黄土沉积。

鄂尔多斯盆地南部大部分为黄土高原。黄土高原的地形外貌在很大程度上受古地貌的控制。基底平坦而未受流水切割的部分为黄土塬,而受到较强侵蚀的塬地则变为破碎塬。在陕北的南部和甘肃陇东地区的塬地保存较完好,如著名的洛川塬和董志塬。在流水和重力作用下,黄土地层连同基底遭到严重切割的地貌成为黄土梁和峁。另外,由于流水侵蚀还可形成狭窄的黄土冲沟和宽浅的黄土涧地,使梁峁起伏,沟壑纵横,地形支离破碎,是人为活动频繁、植被破坏与水土流失最为严重的地区。

鄂尔多斯北部隆起的高平原地区由于气候干旱,长期受风力侵蚀,形成众多的新月形流动沙丘和半固定、固定沙地。北部有库布齐沙漠,南部有毛乌素沙地,东部为黄土丘陵。库布齐沙漠为延伸在黄河南岸的东西带状沙漠,大部分流动和半流动沙丘边沿水分较好。毛乌素沙地多为固定和半固定沙丘,水分条件较好,形成了沙丘间灌草地。

2.煤炭赋存的地质环境

鄂尔多斯盆地煤炭资源丰富,已探明储量近4000亿t,占全国总储量的39%。含煤地层包括石炭系、二叠系、三叠系和中下侏罗统的延安组。

(1)侏罗纪煤田

含煤岩系为下中侏罗统的延安组,由砂、泥岩类及煤层组成,其中泥岩、粉砂岩约占70%左右,透水性弱,其上覆直罗组、下伏富县组均为弱透水岩层。侏罗纪地层中地下水的补给、径流条件差,以风化裂隙为主,构造裂隙不很发育,风化带深度约40~60m,风化带以下岩层的富水性很快衰减。矿井涌水量在一定深度后不仅不再随开采深度的增加而增大,而且会减少,风化带以下地下水径流滞缓,水质很差,矿化度高。矿床水文地质类型一般属水文地质条件简单的裂隙充水型。但在有第四系松散砂层(萨拉乌苏组)广泛分布及烧变岩分布区,水文地质条件往往变得比较复杂,特别在开采浅部煤层时、可能形成比较严重的水文地质和地质环境问题。按照矿井充水强度及水文地质条件的差异,可将侏罗纪煤田划分为4个水文地质分区:①黄土高原梁峁区。主要分布于盆地北部。区内地形切割强烈,上部无松散岩层覆盖或砂层巢零星分布,降水量少而集中,不利于地下水的补给与汇集,岩层富水微弱,矿床充水以大气降水为主,矿井涌水量很小,矿床水文地质条件简单。②烧变岩分布区。沿主要煤层走向呈带状分布,深度一般在60m以浅,宽度受煤层层数、间距、倾角、地形等因素控制。岩层空隙发育,透水性能好,其富水性取决于补给面积和含水层被沟谷切割程度,当分布面积较大或上覆有较广泛的第四纪砂层时,富水性较强,对浅部煤层开采有影响,也常是当地重要的供水水源。③第四系砂层覆盖区。砂层出露于地面且广泛覆盖于煤系之上,厚度数米至数十米,甚至更厚。区内大气降水虽然较少,但砂层的入渗条件很好,可以在大范围内获得大气降水的就近渗入补给,然后汇集到砂层厚度较大且古地形低洼处,以泉或蒸发的形式排泄,在矿井开采浅部煤层时常是最主要的充水水源,可能出现涌水、涌砂问题。该区浅部煤层开采矿床水文地质条件中等至复杂居多。砂层水和烧变岩水往往有密切的水力联系,赋存有宝贵的水资源,但不适当的采煤和采水都可以导致大面积补给区的破坏和水质的污染及生态环境的恶化。因此,在煤田开发中应将采煤、保水和生态环境的保护作为一项系统工程统一规划。④一般地区。不用上述3个水文地质分区的其他地区。该区煤系地层地下水的补给条件不好,含水微弱,矿床水文地质条件属简单,少数中等,矿井涌水量多数为每小时1m3至数十立方米。

(2)陕北三叠纪煤田

该煤田位于盆地中部的黄土梁峁地区。地下水在黄土梁区接受大气降水的少量补给,在沟谷中排泄,径流浅,水量小,岩层富水性弱,风化带以下岩层富水性更弱,矿化度很高,水文地质条件多为简单,属裂隙充水矿床。

(3)石炭、二叠纪煤田

分布于盆地东、南、西部盆缘地区的石炭二叠纪煤田,煤系基底为奥陶、寒武系灰岩,是区域性的强含水层,煤系本身含水比较微弱,属裂隙-喀斯特充水矿床。其矿床水文地质条件的复杂程度,取决于煤系基底灰岩水是否成为向矿井充水的水源及其充水途径和方式。现分区叙述如下:①东部地区。包括准格尔煤田和河东煤田。煤系下伏灰岩强含水层的地下水位埋藏很深,常在许多矿区的可采煤层之下,煤系地层含水微弱,矿床水文地质条件简单,奥陶系灰岩水为矿区的主要供水水源。从长远看,当煤层开采延伸到奥陶系灰岩水位以下时,灰岩水将威胁到下部煤层的开采。②南部渭北煤田。奥灰水地下水位标高为380m左右,而煤层赋存标高从东至西逐渐始升。如在东部太原组煤层的开采普遍受到奥灰水的威胁,而西部铜川矿区的多数煤层则均赋存在灰岩地下水位以上。在渭北煤田,由于奥灰与煤系的接触关系为缓角度不整合,使得不同地区煤系下伏的灰岩岩性和富水性不同,形成不同的水文地质条件分区。380m水位标高以上的煤层,其矿床水文地质条件多为简单至中等,而380m水位标高以下的煤层,水文地质条件属中等至复杂。奥陶系、寒武系灰岩沿煤田南部边缘有部分山露或隐伏于第四系之下,接受大气降水直接或间接补给,灰岩和强径流带也沿煤田的南部边缘分布于浅部地区。故开采浅部煤层时,矿井涌水量大,开采深部煤层时突水的可能性增大,但水量则有可能减少。在韩城矿区北部,黄河水与灰岩水之间有一定的水力联系。灰岩水是当地工农业的最主要水源、要考虑矿坑水的综合利用和排供结合。③西部地区。煤系与奥陶系灰岩之间有厚度较大的羊虎沟组弱含水层存在,奥灰水不能进入矿井,煤系含水比较微弱,矿床水文地质条件多属以裂隙充水为主的简单至中等类型(王双明,1996)。

二、煤炭开发过程中的地质环境状况变化

煤炭开发引起的地质环境问题受矿山所处的自然地理环境、地形地貌、地层构造、水文气象、植被,以及矿产工业类型、开发方式等经济活动特征等因素的影响。目前鄂尔多斯盆地煤矿地质环境问题十分严重。地下开采和露天开采对矿区地质环境影响方式和程度不同。该区煤矿以地下开采为主,其产量约占煤炭产量的96%。尤以地下采煤导致的地质环境问题最为严重,主要地质环境问题以煤矿业导致的地质环境问题结果作为分类的主要原则,可以分为资源毁损、地质灾害和环境污染三大类型及众多的表现形式(表3-2)(徐友宁,2006)。

根据总结资料与实地调查,结合重点区大柳塔矿区及铜川矿区实际情况,我们重点介绍以下5个突出的地质环境问题:①地面塌陷及地裂缝;②煤矸石压占土地及污染水土环境;③地下水系统破坏及污染;④水土流失与土地沙化;⑤资源枯竭型矿业城市环境恶化。

1.地面塌陷与地裂缝

地下开采形成的地面塌陷、地裂缝造成耕地破坏,公路塌陷,铁轨扭曲,建筑物裂缝,以及洼地积水沿裂隙下渗引发矿井透水等事故。在干旱地区由于地表水系受到破坏,导致矿区生产、生活,以及农业用水发生困难。同时,还可诱发山地开裂形成滑坡。

表3-2 煤炭开采的主要地质环境问题

地面塌陷和地裂缝在大中型地下开采的煤矿区最为普遍,灾害也最为严重。如甘肃的华亭煤矿,宁夏的石嘴山、石炭井煤矿和陕西的渭北韩城—铜川,以及神府—东胜煤田矿区。

由于黄土高原人口密集,地面塌陷对土地的破坏主要是对农田的破坏。陕西渭北地区的铜川、韩城、蒲白、澄合等矿务局各矿区位于黄土台塬,该区是陕西渭北优质农业产区和我国优质苹果生产基地,这些国有大中型老煤矿区几十年地下开采导致了地面塌陷、地裂缝,以及山体开裂,成为西北地区煤矿开发对农业生产破坏最为严重地区之一。陕西省采空区地面塌陷总面积约110km2,主要分布于渭北及陕北煤矿区。不完全累计,1999年底,铜川矿区地面塌陷63.82km2,占到全省地面塌陷区55.38%,其中80%为耕地。煤矿区的地面塌陷最为严重,这是因为煤层厚度较金属矿体要大,过采区的空间较金属及其他非金属矿山要大得多,且上覆岩层多为松软的页岩、粉砂岩及泥质岩层。煤矿地表塌陷和地裂缝的范围及深度与采煤方法、工作面开采面积、采区回采率,以及煤层产状等多种因素有关。一般而言,埋深愈浅,开采面积越大,地面塌陷、裂缝范围及深度也越大。榆林神府矿区大砭窑煤矿开采5#煤层,煤层4~6m,埋深90~100m,1992年5月5日,矿井上方发生地面塌陷12000m2,陷落深度0.7m。宁夏石嘴山市石嘴山煤矿开采面积5.15km2,而塌陷面积已达6.97km2,是其开采面积的135%,形成深达8~20m地表塌陷凹地,部分地段的裂缝宽达1m。矿区铁路运输基地高出塌陷区10~20m,使得矿山企业每年用于铁路垫路费高达100万元,穿越矿区的109国道被迫改道。

陕西省煤矿采空区地面塌陷总面积约110km2(表3-3),主要分布于渭北及陕北煤矿区。其中铜川市老矿区因开采较早,地面塌陷比较严重,到1999年底,不完全统计其地面塌陷63.82km2,占到全省地面塌陷区55.38%,其中80%为耕地。而神木县近几年煤矿开发力度不断增大,加之煤层埋藏较浅,地面塌陷程度增大,截至2001年,该县乡镇煤矿造成地面塌陷达5.32km2。

表3-3 鄂尔多斯能源基地陕西境内煤矿区地面塌陷

(据西北地矿所)

陕西省渭北煤田的铜川、黄陵、合阳、白水、韩城各矿区、陕北神府煤田的大柳塔、大砭窑、洋桃瑁、沙川沟、刘占沟、新民矿等矿区,均出现有不同程度的地面塌陷、地裂缝及山体滑坡,造成大面积的农田被毁、房屋开裂、铁轨扭曲、公路塌陷、矿井涌水等。2001年7月,特大暴雨使黄陵店头陕煤建五处矿区仓村三组的1.2hm2耕地发生地面塌陷、地裂缝,地裂缝最宽可达15m,塌陷落差达7.45m,60%耕地已无法复垦,农田搁荒,预计经济损失达270万元。铜川煤矿区地裂缝5400余条,以王石凹煤矿为例,在1∶5000的地形图上填绘的裂缝就有70多条,总长度近7000余米。神府矿区大柳塔矿201工作面煤层埋藏浅,1995年7月10日开始回采,放顶后地表形成裂缝,实测裂缝区面积为5742.5m2。第一期开采计划完成后,预计未来大柳塔矿采空区总面积5.8hm2,可能发生地裂缝区域总面积约5.45hm2。裂缝区与采空区面积之比为0.94。目前塌陷面积达到7.7km2。20世纪90年代,甘肃窑街矿区矿井地面占地598.1hm2。地面塌陷20处共计443.54hm2,地面塌陷面积比80年代扩大了48.4%,每年以14.47hm2的速度扩大,10年间因塌陷引起的特大型山体滑坡等灾难性地质事故数起。80年代造成水土流失面积449~550hm2,90年代达到663~720hm2。

2.煤矸石压占土地及污染水土环境

煤矸石是采煤和选煤过程中的废弃物,通常占煤矿产量的12%~20%,是煤矿最大的固体废弃物之一,其堆积会压占土地植被。陕西黄陵店头地处黄土高原地带,小流域地区的森林植被良好,但是部分煤矿排放的煤矸石堆积在山坡上,压占了生长良好的杂木林。陕西韩城下峪口黄河滩地湿地芦苇茂密,生态环境良好,但是下峪口煤矿排放煤矸石填滩造地,却压占并破坏了黄河湿地生态资源与环境,应引起有关部门的高度重视。煤炭资源大面积连续开采,造成了难以恢复的地下水破坏,同时导致地表河流流量锐减,生态环境破坏。1997年以来,陕西神府煤田开发区已有包括窟野河在内的许多河流出现断流。

煤矸石堆积长期占压土地。截至2000年,铜川矿务局下属12个矿山,煤矸石累计堆存量1264.99万t,大小矸石山150余处,其中100万t以上的矸石山35处,矸石压占2.37km2。

堆积的矸石山易发生自燃,产生大量硫化氢等有害气体,对周边村民身体健康产生很大危害。据有关资料,每平方米矸石山自燃一昼夜可排放CO10.8kg,SO26.5kg,H2S和NO22kg等。依据国家卫生标准规定,居民区大气环境中有害物质的最高允许浓度SO2日均浓度为0.15mg/m3、H2S为0.01mg/m3,显然,煤矸石自燃区的大气环境污染超过了国家标准,必然危害居民身体健康。

陕西铜川矿务局下属共有13个矿井,其中6个矿井煤矸石堆存在自燃(图3-2),矸石山周围SO2,TSP,苯并芘等都严重超标,据有关资料在自燃矸石山周围工作过5年以上的职工患有不同程度的肺气肿。陕西韩城桑树坪矿矸石山自燃造成空气中SO2和CO2严重超标,其中SO2浓度平均超标16倍,CO2浓度平均超标20倍。在这种空气环境下,甚至发生了工人昏倒在排矸场的现象。

图3-2 铜川矿务局王石凹煤矿正在冒烟的矸石山

煤矸石不仅造成大气污染,矸石山淋滤水还会造成临近地表水源、地下水,以及矸石山下伏土壤的污染。本次调查在铜川矿务局金华山煤矿采集的矸石山淋滤水样,颜色发黑,经检测发现是酸性水,pH值为2.82,COD为812.5mg/L,悬浮物含量128.0mg/L,重金属含量汞、镉、铜、镍、锌、锰均超标;在三里洞煤矿采集的矸石山淋滤水pH值为1.77,COD为621.6mg/L,TDS含量达160.658g/L,水化学类型为Mg·SO4型;这些矸石山淋滤水流入地表水体或渗入土壤,都会造成一定程度的污染。

3.地下水系统破坏及污染

鄂尔多斯能源基地煤炭开采区大多为严重缺水地区。矿井疏干排水造成地下水均衡系统的破坏,地下水位下降,水量减少。煤矿酸性及高矿化度井水造成地下水污染,加剧了水资源危机。煤炭资源大面积连续开采,造成了难以恢复的地下水破坏,同时导致地表河流流量锐减,生态环境破坏。1997年以来,陕西神府煤田开发区的不少河流断流,如2000年窟野河断流75d,2001年断流106d。由于煤矿采空区裂缝遍布,最宽达2m多,局部地区地面下降2~3m,导致原流量达7344m3/d的双沟河已完全干涸,400多亩水田变为旱地,杨树等植被大片枯死。

陕西渭北铜川、蒲白、澄合和韩城等煤矿是矿井突水主要发生地,素有渭北“黑腰带”之称的铜川、蒲白、澄合、韩城四大煤矿区又是高瓦斯矿区,1975年5月11日,铜川矿务局焦坪煤矿前卫矿井发生重大瓦斯煤尘爆炸事故,死亡101人,受伤15人,全井造成严重破坏。2001年4月,铜川、韩城两起瓦斯爆炸造成86人死亡的重大恶性事故,社会影响极坏。

陕西省的矿井突水主要发生在渭北铜川、蒲白、澄合和韩城等煤矿区。1989年,上述4个矿务局27个煤矿31处自然矿井,受地下水威胁的矿井占32.3%。据不完全统计共计发生矿坑突水36次,其中1975~1982年该区发生奥灰岩土石事故29次,占其矿井突水事故地80.56%。该区矿井下水灾主要来源于奥灰岩岩溶水和古窑采空区积水。1960年1月19日,铜川矿务局李家塔煤矿发生老窑突水53476m3,淹没巷道18条,总长1880m,直接经济损失7142元,死亡14人。20世纪60年代以前,该区带主要矿井巷道还位于+380m水平面上,70年代后,蒲白、韩城、澄合等新建矿区部分开拓巷道位于+380m水平面之下。1974年以后,象山、马沟渠、桑树坪、董家河、权家河、二矿、马村矿相继发生奥灰岩突水事故29次,淹没巷道万余米,致被迫停产,重掘巷道的巨大损失,直接经济损失近2000万元。

宁夏石嘴山煤矿区因地面塌陷,地裂缝交错,地面低凹积水,地表水沿裂隙进入地下巷道,使矿区多次发生突水事件,造成人员伤亡和巨大的经济损失(表3-4)。

表3-4 宁夏石嘴山煤矿矿井突水一览表

陕西黄陵县店头沮水河两岸分布着十几家个体小煤矿,不顾后果在河道下采煤,在8km2范围内形成4处较大的塌陷区,均横跨沮水河床,地裂缝达20cm,最大塌陷区面积达1000m2以上,大片耕地塌陷,民房出现裂缝,饮水井水量和水质发生变化。1998年9月13日个体小煤矿牛武矿非法开采沮河河床保安煤柱,并越界穿过沮水河,同个体水沟小窑多处相互打通,发生矿井透水,最终导致苍村一号斜井西采区被淹,使陕西黄陵矿业公司一号煤矿主平硐在1999年“3.24”发生重大突水事故,涌水量瞬间增至800m3/h,迅速淹没了3条平硐。小煤窑无序采煤不仅造成自己淹井停产,也给黄陵矿业公司造成直接经济损失3401万元,间接经济损失3100万元。同时,沮水河河水在上游进入煤矿采空区后,又在下游报废小煤窑井口流出排入沮水河,给居民生产和生活带来了很大困难。黄陵个体煤矿无序开采诱发的矿井突水事故再一次说明采矿业的发展必须遵循可持续发展原则,合理布局,加强矿业秩序的日常监督管理,才能使整个采矿业沿着健康的轨道发展。

长期以来,由于技术水平所限和认识不足,矿井水被当作水害加以防治,矿井水被白白排掉而未加以综合利用和保护。2000年,西北地区国有矿井煤产量3785万t,平均吨煤排水量1.3t,其他矿井煤产量5209万t,平均吨煤排水量0.324t。西北地区的煤矿主要位于干旱、半干旱地区,矿区水资源匮乏,毫无节制的排水不仅大大破坏了地下水资源,增加了吨煤成本,而且还导致地面塌陷、地下水资源流失、水质恶化,还可能造成地下突然涌水淹井事故。

煤矿矿井水多属酸性水,未加处理直接排放,加剧了干旱地区矿山用水危机。陕西、宁夏、内蒙古部分矿井水pH值均小于6,陕西铜川李家塔矿井水pH值更低为3。酸性矿井水直接排放会破坏河流水生生物生存环境,抑制矿区植被生长。甘肃、宁夏、内蒙古西部大部分矿井及陕西中部和东部等矿井水是高矿化度水,一般矿化度均大于1000mg/L。

2002年7月在陕西渭北煤矿区的一些矿务局调查时发现,陕西白水部分矿山存在将坑道废水直接排入地下岩溶裂隙,导致岩溶水污染,此问题应引起有关部门的高度重视,尽快采取措施保护岩溶水,使地下水资源不受污染。

4.水土流失与土地沙化

水土流失导致的土壤侵蚀是生态恶化的重要原因。黄土区、黄土与风沙过渡区的矿区水土流失量最大。陕西的铜川、韩城、神府煤矿区;宁夏的石嘴山、石炭井煤矿区;陕蒙神府—内蒙古东胜水土流失都十分严重。有关环境报告资料预测,陕西神府—内蒙古东胜矿区平均侵蚀模数按1.21万t/km2·a,面积按3024km2计算;年土壤侵蚀量为3659.04万t。据几个矿区开发前后不同时期的遥感资料以及河流、库坝、泥沙资料综合分析和计算表明,煤矿开采后水土流失量一般为开采前的2倍左右。内蒙古的乌达等矿区,侵蚀模数达10000~30000t/km2·a,是开采前水土流失量的3.0~4.5倍。陕西黄陵矿区建矿前土壤侵蚀模数为500t/km2·a,建矿5年后,土壤侵蚀模数已达1000t/km2·a。随着矿区的开发水土流失问题日益严重,不仅破坏了生态环境,还直接威胁矿区安全。例如,陕西神木中鸡煤矿由于矿渣倾入河道,占据河床2/3的面积,1984年8月雨季时河水受阻回流,造成特大淹井事故。

煤炭开采形成的地面塌陷造成浅层地下水系统破坏,使塌陷区植被枯死,为土地沙漠化的活化提供了条件。其次,露天煤矿、交通及天然气管道工程建设占用大量耕地,破坏植被,使表土疏松,使部分原已固定和半固定沙丘活化。戈壁沙漠区煤矿废渣堆放,风化加剧了土地沙化。

陕西神府煤田矿区大规模开发以及地方、个体沿河沟两岸乱挖滥采,破坏植被,导致沙土裸露,加剧水土流失和土地沙化。自80年代中期开发以来,毁坏耕地666.7hm2,堆放废渣6000多万t,破坏植被4946.7hm2,增加入黄泥沙2019万t。据“神府东胜矿区环境影响报告书”提供的预测结果,若不采取必要的防沙措施,矿区生产能力达到3000万t规模时,将新增沙漠化面积129.64km2,煤矿开发导致的沙漠化面积为自然发展产生沙漠化面积的1.53倍,新增入河泥砂量480万t,比现有条件下进河泥砂量增加13.7%。

5.煤炭资源枯竭与城市环境恶化

鄂尔多斯现有煤田有些开发较早,可以追溯到20世纪五六十年代。起初,由于技术落后,造成资源浪费,加之很多矿区达到服务年限,到现在已无资源可采。如铜川矿务局是1955年在旧同官煤矿的基础上发展起来的大型煤炭企业。全局在册职工30041人,离退休人员32691人,职工家属约21.6万人。由于生产矿井大多数是50年代末60年代初建成投产的,受当时地质条件和开采条件所限,所建矿井煤炭储量、井田范围、生产能力小,服务年限短。80年代以来先后有9对矿井报废,实施关闭,核减设计能力396万t。目前全局8对生产核定能力965万t/a,均无接续矿井。东区部分矿井资源枯竭,人多负担重,生产成本高,正在申请实施国家资源枯竭矿井关闭破产项目。生产发展接续问题日益突出,企业生存发展面临严峻挑战。矿业城市的可持续发展受到地方政府及相关学者的关注。煤炭资源枯竭的直接后果是矿业城市面临转型,大量问题需要解决,如人员安置、环境改善、寻找新的主打产业等。

三、煤炭开发引起的地质环境问题对煤炭开采的影响

大规模的煤炭开发活动不但极大地破坏了当地的地质环境和生态环境,也在很大程度上制约了煤炭开采活动的正常进行,主要表现在以下几个方面:

(1)采煤塌陷及地裂缝造成水资源量减少、地下水体污染,影响矿区采煤活动的正常运行

采煤塌陷造成含水层结构破坏,使原来水平径流为主的潜水,沿导水裂隙垂直渗漏,转化为矿坑水;在采矿疏干水过程中又被排出到地表,在总量上影响地下水资源。采煤塌陷形成塌陷坑、自上而下的贯通裂隙,使当地本就稀缺的地表水、地下水进入矿坑而被污染,使地下水质受到影响,进而影响到地下水的可用资源量。如在神府东胜矿区,采煤塌陷一方面使萨拉乌苏组含水层中地下水与细沙大量涌入矿坑,造成井下突水溃沙事故;另一方面矿坑排水需大量排放地下水,既浪费了宝贵的水资源,又破坏了矿区的水环境(张发旺,2007)。

另外,采煤塌陷对水环境造成影响的最重要因素是塌陷裂缝。其存在不但增加了包气带水分的蒸发,造成地表沟泉、河流等的干涸,而且增加了污染物的入渗通道,从而导致土壤水和地下水体的污染。

西北煤矿区水资源原本缺乏,再加上塌陷及地裂缝造成的可用水资源量的减少,使矿井用水、洗煤厂用水、矿区生活用水等均面临严峻挑战。

(2)煤层及煤矸石自燃不但浪费了大量煤炭资源,而且影响煤炭开采

鄂尔多斯盆地北部的侏罗系煤田分布区,煤层埋藏浅深度只有0~60m,并且气候干旱,植被稀少,形成了有利于煤田大规模自燃的气候条件。因此煤层及煤矸石自燃大面积分布,如乌海煤田、神东煤田等。煤层及煤矸石自燃不仅会烧掉宝贵的煤炭资源,并且会影响煤炭开采、污染空气,造成巨大经济损失。

(3)矿坑突水事故不但破坏了地表水和地下水资源,往往也会淹没矿井巷道,严重影响煤炭开采,造成重大人员伤亡和经济损失

在我国,大部分石炭-二叠系煤炭开采时会受到水量丰富的奥陶系灰岩水的威胁。由于水量巨大,流速快,水压高,奥陶系灰岩水造成的突水事故往往十分巨大,如1984年6月发生的开滦范各庄煤矿发生的世界罕见的特大奥陶系灰岩水突水事故,突水4d内把范各庄煤矿淹没,又突入相邻的吕家坨煤矿并将其全部淹没,并向另一相邻矿林西矿渗水,经过4个月才完成封堵工作,造成的经济损失达5亿元以上。在鄂尔多斯盆地,石炭-二叠系煤层主要分布在铜川、蒲白、澄合和韩城一线,历史上共发生矿坑突水事故40余次。如1960年1月19日铜川矿务局李家塔煤矿发生老窑突水53476m3,淹没巷道18条,死亡14人。

陕西黄陵县店头沮水河两岸个体小煤矿无序生产,1998年9月至1999年3月造成一系列突水事故,给黄陵矿业公司造成的直接经济损失就有3401万元,间接经济损失3100万元。

煤炭开发中的主要环境地质问题

西北地区煤炭开采区主要分布在黄土高原的陕西韩城—铜川—彬长—黄陵等渭北煤田区、陕西神府及内蒙古东胜煤田区,甘肃平凉华亭、阿干镇、窑街煤田区,宁夏灵武、石嘴山、石炭井煤田区,内蒙古乌达、海勃湾、包头石拐煤田区,新疆的乌鲁木齐、哈密三道岭煤田区等。

总体而言,西北地区煤矿开采引发的环境地质问题十分严重,是所有矿产工业类型中矿山环境地质问题最为严重的一种类型。地下开采和露天开采对矿区地质环境影响方式和程度不同,以地下采煤导致的环境地质问题最为严重。西北地区煤矿以地下开采为主,其产量约占煤炭产量的96%,主要环境地质问题见表3-7。煤矿开采的环境地质问题示意图见图3-3。

表3-7 煤炭开采的主要环境地质问题

图3-3 煤矿开采环境地质问题示意图

露头煤及浅部煤层采用露天开采,改变了原有的地形地貌:高陡边坡诱发滑坡(①),外排土矸场占压土地(②),废渣堆积沟坡上,暴雨诱发形成滑坡(①)和泥石流(③)地质灾害。煤层采空区(④、⑤)上方地裂缝(⑥)会造成建筑物开裂、农田被毁,稍深部煤层采空区上方发生地面塌陷(⑦),耕地被毁,村庄搬迁。煤矸石堆积占压土地的同时,矸石山粉尘及自燃(⑧)产生的有毒有害气体、风井排出的沼气、二氧化碳等污染大气环境(⑨),危及人类健康。露天矿排矸场及煤矸石淋溶水造成地表水土(⑩)及农作物污染,下渗造成地下水及岩溶水污染(

)

3.4.2.1 煤矸石压占土地

煤矸石是采煤和选煤过程中的废弃物,通常占煤矿产量的12%~20%,是煤矿最主要的固体废弃物,主要危害是堆积压占土地破坏植被。陕西黄陵店头地处黄土高原地带,小流域地区的森林植被良好,但是部分煤矿排放的煤矸石堆积在山坡上,压占了生长良好的杂木林。陕西韩城下峪口黄河滩湿地芦苇茂密,生态环境良好,但是该矿排放的煤矸石填滩造地,破坏了黄河湿地生态资源与环境。

3.4.2.2 对水资源的影响

产于鄂尔多斯盆地周边的石炭-二叠系中的煤田,其下部是奥陶系石灰岩,上部为侏罗系砂泥岩,属干旱盆地严重缺水地区。矿井疏干排水导致地下水均衡系统破坏,地表水水量减少,地下水位下降。煤矿酸性及高矿化度的井水造成地下水污染,加剧了水资源危机。新疆乌鲁木齐市六道湾煤矿煤系地层倾角67°~78°,开采后形成自上而下的采空区塌陷和裂缝带,造成水资源流失的环境破坏。煤炭资源大面积连续开采,造成了难以恢复的地下水破坏,同时导致地表河流流量锐减,生态环境破坏。1997年以来,陕西神府煤田开发区的不少河流断流,如2000年窟野河断流75d,2001年断流106d。由于煤矿采空区裂缝遍布,最宽达2m多,局部地区地面下降2~3m,导致原流量达7344m3/d的双沟河已完全干枯,26.67ha水田变为旱地,杨树等植被大片枯死。

3.4.2.3 崩塌、滑坡、泥石流

露天矿山高陡边坡开挖或堆积在斜坡体上的采矿废渣因暴雨、地面塌陷、地裂缝等原因引发崩塌、滑坡。煤矿区滑坡主要发生在露天矿、黄土高原以及山地矿山。如新疆哈密三道岭露天煤矿1967、1983 和1999年先后三次发生较大规模的滑坡,造成矿区运输中断,直接经济损失上百万元。内蒙古包头石拐矿区由于采煤使地下采空区面积增大,近几年滑坡活动加剧,目前滑坡体东西长100~370m,南北宽600余m,面积约16×104m2,体积约400×104m3。从1979年至今已毁坏民房及其他建筑物达5000m2,堵塞了通往五当召旅游点的道路600m,造成经济损失约400万元。红旗山出现了多组东西向宽约0.1~1.5m、南北走向长约100~300m的地裂缝,危及山脚下677户1947人的生命财产安全。

陕西韩城象山煤矿因地下采煤及渠道渗水等原因,引起山体蠕滑,直接威胁坑口电厂——韩城电厂主厂房的安全,为此付出了上亿元的防治费用。陕西彬县百子沟煤矿地下采煤采空区上方岩层垮落、下沉,使地表斜坡失去平衡导致1995年7月6日的黄土滑坡,滑距约30m,180×104m3土方量堵塞河道形成堰塞湖。滑坡将矿部三座大楼整体向前推移5~7m,楼房墙壁出现裂缝,地板鼓起,地基被毁。由于事先的预报准确,所幸无人员伤亡。1991年8月9日,陕西铜川金华山煤矿西侧黄土塬边由于地下采煤引起崩塌、滑坡,土方量达1050×104m3,将坡脚处的西龙村埋没,大片良田被毁,损失巨大。

陕西铜川焦坪、王石凹、李家塔、金华山、桃园等煤矿均发生过严重的滑坡,铜川矿区有中等以上规模滑坡1000多处,铜川市区有154处,崩塌体361处。陕蒙神府—东胜矿区地处干旱半干旱地带,植被覆盖率低,土壤风蚀、水蚀交错,岩层结构疏松,易风化,自然灾害频繁,生态环境十分脆弱。20世纪80年代以来煤田大面积开采,采矿废石及排土乱堆乱放,沿山坡开挖加大了地面坡度。矿区人为泥石流均分布在河道两侧,泥石流直接注入河床,使河床过水断面缩小,行洪能力降低,即使中等水深洪水,也能造成很大灾害。1989年7月21日,矿区上游突降暴雨,3h降雨120mm,在乌兰木伦河形成含沙量高达1360kg/m3的泥石流,淤平坑井11处和露天矿坑9处,其中马家塔露天矿被淹没,泥沙淤积15×104m3,冲毁两岸矿堤1870m、水浇地600亩、路基挡墙60m,导致铁轨悬空,中断行车一月之久,经济损失2000多万元。

3.4.2.4 地面塌陷和地裂缝

地下开采形成的地面塌陷、地裂缝造成耕地破坏、公路塌陷、铁轨扭曲、建筑物裂缝,以及洼地积水沿裂隙下渗引发矿井透水等事故。在干旱地区由于地表水系受到破坏,导致矿区生产、生活以及农业用水发生困难。同时,还可诱发山体开裂形成滑坡。

地面塌陷和地裂缝在大中型地下开采的煤矿区最为普遍,灾害也最为严重。如新疆的六道湾煤矿,甘肃的华亭、窑街、阿干镇、王家山等煤矿,宁夏的石嘴山、石炭井煤矿和陕西的渭北韩城—铜川以及神府—东胜煤田矿区。

调查资料表明,在579座各种类型的矿山中,有115座矿山存在地面塌陷,塌陷面积达20236km2。其中非煤矿山10座,仅占8.70%;而煤矿山有105座,占塌陷矿山的91.30%。根据塌陷面积及严重程度,大于10km2的极差级别矿山8座,占8%;1~10km2差级别矿山 37座,占 35%;0.1~1km2中等级别矿山 37座,占 35%;小于0.1km2较好级别矿山23座,占22%。

煤矿区的地面塌陷最为严重,这是因为煤层厚度较金属矿体稳定,分布范围大,煤层产状较平缓,采煤形成的采空区较金属矿山要大得多,并且上覆岩层多为松软的页岩、粉砂岩及泥质岩层。煤矿地面塌陷和地裂缝的范围及深度与采煤方法、工作面开采面积、采区回采率以及煤层产状等多种因素有关。一般而言,在其他因素相同的条件下,充分采动(用长壁工作面全部垮落法采煤时)比非充分采动(条带部分冒落法采煤)引起的地面塌陷影响范围及深度要大。而煤层采厚越大,倾角越小,埋深愈浅,开采面积越大,地面塌陷、裂缝影响范围及深度也越大。地表最大下沉量W可用公式估算:W=qMcosα。

式中:q为下沉系数,全部冒落采煤法 q=0.70~0.90,条带部分冒落采煤法 q=0.02~0.30;M为煤层法线厚度;α为煤层倾角。

当采深与采厚之比小于20时,地表常发生剧烈变形,此比值大到一定程度后塌陷消失。榆林神府矿区大砭窑煤矿开采5#煤层,煤层厚4~6m,埋深90~100m,1992年5月5日矿井上方发生地面塌陷12000m2,陷落深度0.7m。有关资料指出,塌陷面积与开采面积之比平均值为1.2,塌陷容积与开采体积之比平均值为0.6~0.7。当采深较大时,地面、地表裂缝则较少。当采深H >(100~150)m,或 F=H/M≥20(M 为煤层厚度)时,地表移动和变形在时间和空间上呈明显连续,不出现地裂缝。

根据煤炭工业“九五”环境保护计划,2000年全国(除西北地区,下同)煤矿地面塌陷面积为182.20km2,复垦面积为48.40km2,复垦率为26.6%。西北地区煤矿地面塌陷面积为35.76km2,复垦面积为 4.40km2,复垦率为12.3%,比同期全国平均值低54.9%。2000年西北地区煤炭产量达8994×104t,万吨煤塌陷面积为0.31ha,比全国万吨煤塌陷面积均值0.20ha高55%,而复垦率低51.5%。可见,西北地区煤矿地下开采塌陷区的防治工作应加紧加快。

乌鲁木齐市六道湾煤矿距友好商贸中心仅1.5km,该矿煤层倾角67°~78°,属急倾斜煤层,50年来,地下不同开采水平分段放顶煤采煤后,由于上位顶煤和覆盖层的周期性塌陷断裂,出现与煤层走向一致的条带状塌陷深坑,深度达40~50m,并在塌陷坑两侧形成平行裂缝,造成了连续性的地面塌陷凹槽、地裂缝和塌陷坑。塌陷区目前仅作为乌鲁木齐市城市工业垃圾的填埋场所,在其虚土表面又不断产生新的塌陷深坑和地裂缝,3km2的土地不能开发利用,迫使市政设施建设不得不绕道而行,成为乌鲁木齐城市建设发展的死角。

宁夏石嘴山市石嘴山煤矿开采面积为5.15km2,而塌陷面积已达6.97km2,是其开采面积的135%,形成深达8~20m的地表塌陷凹地,部分地段的裂缝宽达1m。矿区铁路运输基地高出塌陷区10~20m,使得矿山企业每年用于铁路的垫路费高达100万元,穿越矿区的109国道被迫改道。

陕西省煤矿采空区地面塌陷总面积约115km2(表3-8),主要分布于渭北及陕北煤矿区,陕南秦巴山地区仅有零星分布。其中铜川市老矿区因开采较早,地面塌陷比较严重,到1999年底,据不完全统计其地面塌陷为63.82km2,占到全省煤矿区地面塌陷区的55.38%,其中80%为耕地。而神木县近几年煤矿开发力度不断增大,加之煤层埋藏较浅,地面塌陷面积增大,截至2001年,该县乡镇煤矿造成地面塌陷达5.32km2。

表3-8 陕西省煤矿区地面塌陷

陕西省渭北煤田的铜川、黄陵、合阳、白水、韩城各矿区,陕北神府煤田的大柳塔、大砭窑、洋桃瑁、沙川沟、刘占沟、新民矿等矿区,均出现有不同程度的地面塌陷、地裂缝及山体滑坡,造成大面积的农田被毁、房屋开裂、铁轨扭曲、公路塌陷、矿井涌水等。2001年7月特大暴雨使黄陵店头陕煤建五处矿区仓村三组的1.2km2耕地发生地面塌陷、地裂缝,地裂缝最宽达15m,塌陷落差达7.45m,60%耕地已无法复垦,农田撂荒,预计经济损失达270万元。2000年4月,中央电视台《焦点访谈》对陕西铜川市王益区黄堡镇黑池塬乡镇煤矿地下开采造成的村民窑洞开裂、耕地被毁进行了曝光。陕西白水县县办煤矿开采导致白水县火车站候车室出现裂缝、铁轨下沉、广场地面鼓包。陕西渭北煤田地表水平拉伸变形值达到0.8~2.2mm/m时出现地裂缝,裂缝宽300~700mm,深度达5~15m。铜川煤矿区地裂缝有5400余条,以王石凹煤矿为例,在1:5000 的地形图上填绘的裂缝就有70多条,总长度近7000余米。20世纪90年代,甘肃窑街煤矿区矿井地面占地598.1ha,地面塌陷20处,共计443.54ha,地面塌陷面积比80年代扩大了48.4%,每年以14.47ha的速度扩大,10年间因塌陷引起的特大型山体滑坡等灾难性地质事故数起。80年代造成水土流失面积449~550ha,90年代达到663~720ha。甘肃靖远王家山煤矿1995年8月两次洪水携带泥石流从地面裂缝涌入井下,造成多人伤亡。

陕西神木大柳塔煤矿区1997年以后形成采空区,1998年前后产生地面塌陷和地裂缝。大柳塔矿区采空区约为 3.9km2,总面积约 5.8km2,产生地裂缝的总面积约5.45km2。大柳塔活鸡兔井采空区面积过大,造成大面积地面塌陷,其中205工作面塌陷区宽0.3km,长为3km,面积为0.9km2,共发现16条地表裂缝,沿整个工作面呈断续分布,裂缝宽5~60cm,间距2~8m。206 工作面塌陷区宽0.3km,长为3.5km,面积为1.05km2,共发现 5条裂缝,裂缝宽 5~60cm,间距 5m 左右。207 工作面塌陷区宽0.3km,长为1.5km,面积为0.45km2,是整体陷落,其中裂缝十分发育,共发现5条,宽5~30cm,间距10m左右。从神东矿区大柳塔、补连塔和榆家梁3个矿井实测资料可知,其万吨煤地面塌陷面积为0.35~0.42ha,比全国万吨煤地面塌陷面积0.2ha几乎高出1倍,主要原因是煤层埋藏浅(61~110m),煤层厚(3.4~5.0m)。

3.4.2.5 水土流失

据水利部1992年统计,西部地区轻度以上的水土流失面积为104.07×104km2,占全国水土流失面积的58.01%。水土流失导致的土壤侵蚀是生态环境恶化的重要因素。在黄土区、黄土与沙漠过渡区,矿区发生水土流失的可能性最大。据陕西铜川、韩城、神府煤矿区有关环境报告资料预测,陕西神府—内蒙古东胜矿区平均侵蚀模数按1.21×104t/km2·a、面积按3024km2计算,年土壤侵蚀量为3659.04×104t;准噶尔矿区平均侵蚀模数按1.30×104t/km2·a、面积按1365km2计算,年土壤侵蚀量为1774.5×104t。据几个矿区开发前后不同时期的遥感资料以及河流、库坝、泥沙资料综合分析和计算表明,煤矿开采后水土流失量一般为开采前的2倍左右。陕西黄陵矿区建矿前土壤侵蚀模数为500t/km2·a,建矿5年后,土壤侵蚀模数已达1000 t/km2·a。甘肃的窑街、阿干镇、靖远煤矿区,宁夏的石嘴山、石炭井煤矿区,陕蒙神府-内蒙古东胜煤矿区水土流失十分严重。内蒙古的乌达等煤矿区,侵蚀模数达10000~30000t/km2·a,是开采前水土流失量的3.0~4.5 倍。这不仅破坏了生态环境,还直接威胁矿区安全。例如,陕西神木中鸡煤矿由于矿渣倾入河道,占据河床2/3的面积,1984年8月雨季时河水受阻回流,造成特大淹井事故。

3.4.2.6 土地沙化

煤炭开采造成的地面塌陷破坏了浅层地下水系统均衡,因地下水位下降使部分地区的塌陷区植被枯死,形成或加剧土地沙漠化。露天煤矿、交通及天然气管道工程建设占用大量耕地,破坏植被,使部分原已固定和半固定的沙丘活化。戈壁沙漠区煤矿废渣的堆放、风化加剧了土地沙化。

陕西神府煤田矿区的大规模开发以及地方、个体开发沿河沟两岸乱挖滥采,破坏植被,导致沙土裸露,加剧了水土流失和土地沙化。自20世纪80年代中期开发以来,毁坏耕地666.7ha,堆放废渣超过6000×104t,破坏植被4946.7ha,增加入黄泥沙量达2019×104t。据“神府东胜矿区环境影响报告书”预测,若不采取必要的防沙措施,在矿区生产能力达到3000×104t规模时,将新增沙漠化面积129.64km2,煤矿开发导致的沙漠化面积为自然发展产生沙漠化面积的1.53倍,新增入河泥沙量480×104t,比现有条件下进河泥沙量增加13.7%。

3.4.2.7 水土环境污染

煤矿水污染源主要是煤矿开采外排的矿井水、洗(选)煤水以及煤矸石淋滤水。据有关文献,莫斯科近郊煤田矿井地质环境的研究表明,距矸石堆底部50~60m远的土壤中,每100g土壤中铁含量达146~160mg,铝含量达11~19mg,分别超过允许值的3~4和1.5倍,土壤被毒化。

长期以来,由于技术水平所限和认识不足,矿井水被当作水害加以防治,矿井水被白白排掉而未加以综合利用和保护。2000年西北地区国有矿井煤产量3785×104t,平均吨煤排水量1.3t,其他矿井煤产量5209×104t,平均吨煤排水量0.324t。西北地区的煤矿主要位于干旱、半干旱地区,矿区水资源匮乏,毫无节制的排水不仅大大破坏了地下水资源,增加了吨煤成本,而且还导致地面塌陷、地下水资源流失、水质恶化,还可能造成地下突然涌水淹井事故的产生。

煤矿矿井水多属酸性水,未加处理直接排放,加剧了干旱地区矿山用水危机。陕西、宁夏、内蒙古部分矿井水pH值均小于6,陕西铜川李家塔矿井水pH值为3。酸性矿井水直接排放会破坏河流水生生物的生存环境,抑制矿区植被生长。甘肃、宁夏、内蒙古西部、新疆大部分矿井及陕西中部和东部等矿井水是高矿化度水,一般矿化度均大于1000mg/L,其中甘肃靖远大部分矿井水矿化度在4000mg/L以上,尤其是王家山矿高达15000mg/L以上。

2002年7月在陕西渭北煤矿区的一些矿务局调查时发现,陕西白水县个别矿山存在将坑道废水直接排入地下岩溶裂隙的现象,导致岩溶水污染,此问题应引起有关部门的高度重视,应尽快采取措施保护岩溶水,使地下水资源不受污染。

发表评论

评论列表

  • 酒奴未几(2022-06-25 16:00:59)回复取消回复

    要发生在露天矿、黄土高原以及山地矿山。如新疆哈密三道岭露天煤矿1967、1983 和1999年先后三次发生较大规模的滑坡,造成矿区运输中断,直接经济损失上百万元。内蒙古包头石拐矿区由于采煤使地下采空区面积增大,近几年滑坡活动加剧,目前滑坡体东西长100~

  • 瑰颈西奺(2022-06-25 21:16:28)回复取消回复

    林神府矿区大砭窑煤矿开采5#煤层,煤层厚4~6m,埋深90~100m,1992年5月5日矿井上方发生地面塌陷12000m2,陷落深度0.7m。有关资料指出,塌陷面积与开采面积之比平均值为1.2,塌

  • 余安觅遇(2022-06-25 19:32:10)回复取消回复

    60kg/m3的泥石流,淤平坑井11处和露天矿坑9处,其中马家塔露天矿被淹没,泥沙淤积15×104m3,冲毁两岸矿堤1870m、水浇地600亩、路基挡墙60m,导致

  • 南殷不矜(2022-06-25 16:08:39)回复取消回复

    抑制矿区植被生长。甘肃、宁夏、内蒙古西部、新疆大部分矿井及陕西中部和东部等矿井水是高矿化度水,一般矿化度均大于1000mg/L,其中甘肃靖远大部分矿井水矿化度在

  • 余安素歆(2022-06-25 14:15:32)回复取消回复

    水等原因,引起山体蠕滑,直接威胁坑口电厂——韩城电厂主厂房的安全,为此付出了上亿元的防治费用。陕西彬县百子沟煤矿地下采煤采空区上方岩层垮落、下沉,使地表斜坡失去平衡导致1995年7月6日的黄土滑坡,滑距约30m,180×