自制光伏充电控制器电路图(光伏发电充电控制器)
本文目录一览:
- 1、如何制作太阳能充电器
- 2、求可用的太阳能控制器电路图
- 3、简易太阳能白天充电,晚上灯亮线路图?
- 4、讲述光伏发电系统充放电控制器工作原理。 充电控制器原理。 放电控制器原理。 保护电路原理
- 5、求太阳能电池板充电控制器电路
如何制作太阳能充电器
锂电池,先要处理多串的问题,如果是N串,就先要买好N串的保护板(电子城、车载产品有卖,实在买不到,弄个坏掉的笔记本电池拆掉保护板),至于保护板电流5A应该够你用了,这是第一样;
第二样,太阳能控制器(电子城、车载产品有卖)。一般太阳能控制器是为铅酸电池设计的,一般是12V或24V,如果买到了12V的,那你的锂电池串数只能为3串,但是可以多并,多并三串,并多少都可以,但每串容量必须相同,这样锂电池充满电压被强制设置到13.8V/3=4.6V,4.6-4.2=0.4V,超出了锂电池最高电压4.2V,所以,必须将太阳能控制器的最高浮充电压设置到4.2*3=12.6V。这样一来,就可以对锂电池正常充电了;
第三样,逆变器(电子城、车载产品有卖)。300W 500W,应该够用了。价格也才200-300。
至于怎么接线,其实很简单,其实只有保护板需要提示,建议你拆笔记本电池的时候把接线图画下来,其余的接线更简单,不是问题!
求可用的太阳能控制器电路图
这个线路图很简单, 你就接到13-14V的太阳能,然后,送给12V的电池。 问题是,太阳能不稳定,有时候低于这个电压, 你的蓄电池,一下子充电,一下子不充电, 很快寿命就没了。 你所提的问题,本身不合理,忽略了太阳能有光、没光的变化所产生的电流变化。 放弃这个想法吧。 目前,国内估计没有自主能力生产能够并网的太阳能逆变器, 想要这样的电路图, 课本有呀,,只要将阳光发电当作恒电流。 但,这对你的需求没帮助。
简易太阳能白天充电,晚上灯亮线路图?
一、路灯控制系统工作原理:白天光伏电池向蓄电池充电,晚上蓄电池提供电力供路灯照明。所以蓄电池将构成一个充放电循环。太阳能路灯照明控制电路包括光伏电池、蓄电池、路灯和控制器四部分。
1、设计中采用AT89S52单片机,并将其作为智能核心模块。外围电路主要包括太阳能电池电压采样模块、蓄电池电压采样模块、键盘电路模块、LED显示模块、充放电控制模块等。
2、图1是太阳能路灯控制器结构设计图。
向左转|向右转
3、太阳能路灯控制器选择ATMEL公司的8位单片机AT89S52为核心的智能控制模块,在整体上具有低功耗、性能高的特点。
二、单片机振荡电路
1、单片机振荡电路如图2所示。
向左转|向右转
2、太阳能路灯控制电路设计方案汇总(两款太阳能路灯控制电路原理图详解)
三、复位电路
1、复位电路如图3所示,电路结构简单,稳定可靠。
向左转|向右转
2、系统正常工作电压为5V,系统采用12V/24V的铅酸蓄电池供电,蓄电池电压不稳定,所以需要对电源进行稳压。本系统采用LM7805三端稳压器,其输入电压在5~24V时均可以保证输出为稳定的+5V。LM7805组成稳压电源只需要很少的外围元件,使用起来非常方便,工作稳定可靠J。系统电源电路如图4所示。
向左转|向右转
3、太阳能电池采样和蓄电池采样对于系统正常运行起着非常重要的作用。
3.1、太阳能路灯控制器要对蓄电池充放电进行合理控制,即需对蓄电池、太阳能电池板电压进行采样。为此,AT89S52单片机就要外接A/D转换模块,把电压转换为数字信号,系统选用v/F转换芯片LM331组成数模转换电路J。
3.2、在系统采样设计中,为了防止因为外部因素导致AT89S52程序跑飞或死机,提高系统稳定性,在LM331与单片机之间还需增加单通道的高速光电隔离器6n137J。图5为太阳能电池板采样电路图。系统蓄电池采样和太阳能电池板采样电路相同。
向左转|向右转
4、照明系统框图如图l所示。
向左转|向右转
5、图1 LED太阳能节能灯照明系统框图
5.1、单片机经由检测电路检测太阳能发电板所发出来的电压,并由1组A/DCl的转换值来判断是否已天黑。
5.2、当光线充足时,将太阳能发电板所发出的电送至定电压电路,此时,单片机也会由其A/DC1转换值来监控充电电池的电量,并以绿色、黄色与红色的LED来表示充电电池的电量。单片机以定电压的方式来对充电电池充电,只要定电压电路的最大输出电压值依充电电池的规格来设定,就不会发生电池过充而损坏的情形。
5.3、当光线不足(天黑)时,单片机经由A/DC1的转换值检测到太阳能发电板发出的电压已接近于零,此时,单片机会依此A/DC1转换后数值来判断是否点亮LED灯,当此A/DC1转换后的值低于某一临界值时,该值越小,则单片机会输出一脉宽越宽的PWM信号,使LED灯的亮度越亮。
5.4、如果仅靠太阳能电池来对充电电池充电,其充电量可能不足以提供LED灯点亮一整晚。所以我们预计入夜后,此太阳能灯约只点亮6h,此时大约已过深夜12点。
5.5、另外,我们再加入光敏电阻与人体红外线检测器,当太阳能灯点亮6h而熄灭后,如果光敏电阻检测到有车辆驶近,或者人体红外线检测器侦测到有人靠近时,则LED灯会再点亮数分钟,以作照明之用。如此,仅靠太阳能电池的充电量应足以供此LED灯使用。
6、定压、稳压电路
定压、稳压电路如图2所示
向左转|向右转
7、设计中,HT7544是1只4.4V的稳压块,把HT7544的GND脚接地,其输入脚(in)输入的电压大于4.4V,其输出脚(out)会固定输出4.4V的电压。因为HT7544的输出脚(out)电压~LGND大于4-4V,所以流过电阻Rl的电流为
向左转|向右转
8、在本设计中,单片机HT46R23需要的5v稳压电源通过集成稳压块HT7551来供给。HT7551的GND脚接地,其输人脚(in)输入大于5V的电压时,输出脚(out)会固定输出5V的电压。两只10k1)的电阻R3与R4作分压电路,其分压后之电压流人单片机HT46R23的A/DC2转换接脚(PB2),以供单片机检测充电电池的电压。
9、LED驱动电路
LED的驱动电路如图3所示
向左转|向右转
10、驱动电路中,PWM信号由单片机HT46R23的PWMO端输出。
10.1、由图3可知,太阳能发电板所发出来的电压通过电阻R5与R6的分压电路取出。因为,使用的太阳能发电板的工作电压为7.5v,而单片机A/DCl转换的类比输入电压最大为5v,使用两只10kQ的电阻R5与R6来作分压电路,使流入单片机A/DC1转换(PB1)的电压为太阳能发电板所输出电压的一半。
10.2、当A/DC1转换后的数字值小于某1个临界值时,单片机会输出一数字信号c,该信号打开电源控制电路,使电池的电能流人驱动电路中。同时,输出PWM的信号以点亮LED灯。A/Dc1转换后的数字值越小,单片机输出PWM的脉波宽度越宽。
11、检测电路
检测电路如图4所示。光敏电阻(Cds)与人体红外线传感器(GDS),分别检测车辆灯光与人体的红外线。
向左转|向右转
12、定压、稳压电路
12.1、图4的最左边是光敏电阻,为检测车灯的电路。光敏电阻受光越强,其电阻值越小。在夜晚时,光敏电阻的电阻值变大,单片机HT46R23的PB0所检测到的电压值较小;当车灯照射到光敏电阻时,光敏电阻的电阻值就会变小,单片机之PB0检测到的电压值就会比较大。
12.2、因此在夜晚,当单片机的PB0所检测到的电压值大于某临界值时,即表示有车辆接近,则单片机将点亮LED灯。
12.3、图中的人体红外线传感器的检测电路是当有人进入检测范围时,人体红外线传感器会发出1个小脉波,因为此小脉波的功率很小,需要经过几次放大器(LM324)的放大,其信号才能有效地被单片机接收,所以平时无人进人人体红外线检测器的检测范围时,此电路的输出为低电位;当单片机的PC0收到高电位时,表示有人进人人体红外线传感器的检测范围,单片机将点亮LED照明灯。
(1)在成品上方的太阳能发电板有受光的情形下,其输出是否有7.5V以上的太阳能发电板之工作电压。
(2)如果上述测试正常的话,在未接充电电池的情形下,定电压电路.HT7544的输出端应该会有约6V的电压输出。流经1个整流二极管后,约为5.4v的电压,以供充电电池充电之用。
(3)将充电电池接至电路中稳压电路,HT7551会输出5V的电压给单片机使用。
(4)以不透光物质遮蔽太阳能发电板,以模拟人夜的情形。当单片机的PB1所检测到的太阳能发电板的输出电压值小于某一临界值时,表示天色已暗。此时,单片机会输出一高电位给控制信号c,以打开电源控制电路,使电池的电能流人LED驱动电路中。同时,单片机会输出FWM信号以点亮LED灯。6h的时间较长,此时让LED灯持续点亮1min,以模拟点亮6h,6h后应已过深夜,人车已少,所以熄灭LED灯。
(5)当已过6h而LED灯熄灭后,如果有人车接近,则装在PB0的光敏电阻或装在PCO的人体红外线检测器应会感应到车灯或人体所发出来的红外线。此时,单片机会再点亮LED灯约30S,以作警示或照明之用。此情形直到单片机的PB1所检测到的太阳能发电板所输出的电压值大于某1个临界值时,表示天色已亮,程式再回到开始的状态。
四、接线说明:
1、 先接蓄电池的连接线
2、 再接蓄电池到控制器的线
3、 再接太阳能板到控制器的线
4、 最后接负载到控制器的线
5、 负载为低压钠灯时,在做灯具的时候应该先把整流器的输出端接光源的两端的线先连接好(低压钠灯光源无正负极可任意连接)。把整流器的输入端连接两根足够长的线(要能区分正负极)。在最后接负载到控制器的接线时注意正负极不能接反。
讲述光伏发电系统充放电控制器工作原理。 充电控制器原理。 放电控制器原理。 保护电路原理
讲述光伏发电系统充放电控制器工作原理,篇幅所限,这里只能简述。
充电控制器原理:当有光照太阳能电池电压高于蓄电池电压时,给蓄电池充电;当光照减弱太阳能电池电压低于蓄电池电压时,充电控制器待机。
放电控制器原理:当检测到交流市电停电(或者人工切换到放电状态),电源切换继电器动作并启动逆变器工作,对外输出逆变电压;当检测到交流市电来电电(或者人工切换到充电状态),电源切换继电器动作并停止逆变器工作,进入充电状态。
保护电路原理:当检测到蓄电池充满,停止充电;当检测到蓄电池到放电终止电压,停止放电。
求太阳能电池板充电控制器电路
串联一个防止反充的二极管直接给电池充电就行了,一般太阳能电池板的我内阻比较大,充电电流不会太大。