b2c信息网

您现在的位置是:首页 > 大豆信息 > 正文

大豆信息

高中三角函数知识点(高中三角函数知识点总结大全)

hacker2022-08-19 16:55:20大豆信息86
本文目录一览:1、高中三角函数的知识点有哪些?2、

本文目录一览:

高中三角函数的知识点有哪些?

一、集合、简易逻辑(14课时,8个)

1.集合; 2.子集; 3.补集;

4.交集; 5.并集; 6.逻辑连结词;

7.四种命题; 8.充要条件.

二、函数(30课时,12个)

1.映射; 2.函数; 3.函数的单调性;

4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充;

7.有理指数幂的运算; 8.指数函数; 9.对数;

10.对数的运算性质; 11.对数函数. 12.函数的应用举例.

三、数列(12课时,5个)

1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式;

4.等比数列及其通顶公式; 5.等比数列前n项和公式.

四、三角函数(46课时17个)

1.角的概念的推广; 2.弧度制; 3.任意角的三角函数;

4,单位圆中的三角函数线; 5.同角三角函数的基本关系式;

6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切;

8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质;

10.周期函数; 11.函数的奇偶性; 12.函数 的图象;

13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理;

16余弦定理; 17斜三角形解法举例.

五、平面向量(12课时,8个)

1.向量 2.向量的加法与减法 3.实数与向量的积;

4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积;

7.平面两点间的距离; 8.平移.

六、不等式(22课时,5个)

1.不等式; 2.不等式的基本性质; 3.不等式的证明;

4.不等式的解法; 5.含绝对值的不等式.

七、直线和圆的方程(22课时,12个)

1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式;

4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离;

7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念;

10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程.

八、圆锥曲线(18课时,7个)

1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程;

4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程;

7.抛物线的简单几何性质.

九、(B)直线、平面、简单何体(36课时,28个)

1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线;

4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质;

6.三垂线定理及其逆定理; 7.两个平面的位置关系;

8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示;

10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角;

13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质;

16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角;

19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离;

22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体;

25.棱柱; 26.棱锥; 27.正多面体; 28.球.

十、排列、组合、二项式定理(18课时,8个)

1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’

4.组合; 5.组合数公式; 6.组合数的两个性质;

7.二项式定理; 8.二项展开式的性质.

十一、概率(12课时,5个)

1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率;

4.相互独立事件同时发生的概率; 5.独立重复试验.

选修Ⅱ(24个)

十二、概率与统计(14课时,6个)

1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法;

4.总体分布的估计; 5.正态分布; 6.线性回归.

十三、极限(12课时,6个)

1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限;

4.函数的极限; 5.极限的四则运算; 6.函数的连续性.

十四、导数(18课时,8个)

1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数;

4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式;

7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.

十五、复数(4课时,4个)

1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法

高中数学三角函数的图像和性质知识点总结

已知函数f(x)=√3sinωx-cosωx(ω>0)的图象与直线y=2的两个相邻交点的距离等于π,则为得到函数y=f(x)的图象可以把函数y=sinωx的图象上所有的点()

a.向右平移

π/12

,再将所得图象上所有的点的纵坐标变为原来的2倍

b.向右平移

π/6

,再将所得图象上所有的点的纵坐标变为原来的

1/2

c.向左平移

π/12

,再将所得图象上所有的点的纵坐标变为原来的

1/2

d.向左平移

π/6

,再将所得图象上所有的点的纵坐标变为原来的2倍

解析:∵函数f(x)=√3sinωx-cosωx(ω>0)的图象与直线y=2的两个相邻交点的距离等于π

∴f(x)=√3sinωx-cosωx=2sin(ωx-π/6)

t=π==ω=2π/π=2

∴f(x)=2sin(2x-π/6)=2sin(2(x-π/12))

把函数y=sinωx的图象上所有的点,向右平移

π/12

,再将所得图象上所有的点的纵坐标变为原来的2倍

∴选择a

三角函数的图像与性质知识点总结有哪些?

三角函数的图像与性质知识点如下:

1、正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)(π/2,1)(π,0)(3π/2,-1)(2π,0)。

2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

3、三角函数是高考中常见的重要考点之一,它属于基本初等函数,常见的三角函数包括正弦函数、余弦函数和正切函数。

4、有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。

5、sin(x),cos(x)的定义域为R,值域为〔-1,1〕;tan(x)的定义域为x不等于π/2+kπ,值域为R。

求教 学习三角函数所需的知识点

三角函数包括正弦函数(sin),余弦函数(cos),正切函数(tan),余切函数(cot),正割函数(sec),余割函数(csc)。

sinx为周期函数,最小正周期为2π,也是奇函数,定义域为R,值域为[–1,1]

在(2kπ–π/2,2kπ+π/2)单调递增

在(2kπ+π/2,2kπ+3π/2)单调递减

对称轴  x=kπ+π/2,k∈Z

对称中心 (kπ,0),k∈Z

x=2kπ+π/2时,取得最大值

x=2kπ–π/2时,取得最小值

cosx为周期函数,最小正周期为2π,也是偶函数,定义域为R,值域为[–1,1]

在(2kπ–π,2kπ)单调递增

在(2kπ,2kπ+π)单调递减

对称轴  x=kπ,k∈Z

对称中心 (kπ+π/2,0),k∈Z

x=2kπ时,取得最大值

x=2kπ+π时,取得最小值

tanx为周期函数,最小正周期为π,也是奇函数,定义域为{x|x≠kπ+π/2,k∈Z},值域为R

在(kπ–π/2,kπ+π/2)单调递增

对称中心(kπ/2,0), k∈Z

渐近线x=kπ+π/2,k∈Z

cotx为周期函数,最小正周期为π,也是奇函数,定义域为{x|x≠kπ,k∈Z},值域为R

在(kπ,kπ+π)单调递减

对称中心(kπ/2,0) ,k∈Z

渐近线x=kπ,k∈Z

                            y=cotx的图像

secx为周期函数,最小正周期为2π,也是偶函数,定义域为{x|x≠kπ+π/2,k∈Z},值域为(–∞,–1]∪[1,+∞)

在(2kπ–π/2,2kπ)单调递减

在(2kπ,2kπ+π/2)单调递增

在(2kπ+π/2,2kπ+π)单调递增

在(2kπ+π,2kπ+3π/2)单调递减

对称轴x=kπ,k∈Z

对称中心(kπ+π/2,0), k∈Z

渐近线x=kπ+π/2,k∈Z

                              y=secx的图像

cscx为周期函数,最小正周期为2π,也是奇函数,定义域为{x|x≠kπ,k∈Z},值域为(–∞,–1]∪[1,+∞)

在(2kπ,2kπ+π/2)单调递减

在(2kπ+π/2,2kπ+π)单调递增

在(2kπ+π,2kπ+3π/2)单调递增

在(2kπ+3π/2,2kπ+2π)单调递减

对称轴x=kπ+π/2,k∈Z

对称中心(kπ,0), k∈Z

渐近线x=kπ,k∈Z

                               y=cscx的图像

三角函数基本公式

三角函数求导

(sinx)'=cosx

(cosx)'=–sinx

(tanx)'=sec²x

(cotx)'=–csc²x

(secx)'=secxtanx

(cscx)'=–cscxcotx

三角函数的积分(了解)

∫sinxdx=–cosx+C

∫cosxdx=sinx+C

∫tanxdx=–ln|cosx|+C

∫cotxdx=ln|sinx|+C

∫secxdx=ln|secx+tanx|+C

=ln|tan(x/2+π/4)|+C

=1/2 ln|(1+sinx)/(1–sinx)|+C

∫cscxdx=ln|cscx–cotx|+C

=1/2 ln|(cosx–1)/(cosx+1)|+C

=ln|tan(x/2)|+C

∫secxdx=∫1/cosxdx=∫cosx/cos²xdx=∫1/(1–sin²x)dsinx

=1/2 ∫[1/(1+sinx)+1/(1–sinx)]dsinx

=1/2 ln(1+sinx)–1/2 ln(1–sinx)+C

=1/2 ln[(1+sinx)/(1–sinx)]+C

=1/2 ln[(sin(x/2)+cos(x/2))²/(sin(x/2)–cos(x/2))²]+C

=1/2 ln|tan²(x/2+π/4)|+C

=ln|tan(x/2+π/4)|+C

=ln|sin²(x/2+π/4)/(sin(x/2+π/4)cos(x/2+π/4))|+C

=ln|(1–cos(x+π/2))/sin(x+π/2)|+C

=ln|(1+sinx)/cosx|+C

=ln|secx+tanx|+C

∫secxdx=∫(secx+tanx)secx/(secx+tanx)  dx

=∫(sec²x+tanxsecx)/(secx+tanx) dx

=∫1/(secx+tanx) d(secx+tanx)

=ln|secx+tanx|+C

cosx=(1–tan²(x/2))/(1+tan²(x/2))

令tan(x/2)=u,则x=2arctanu,dx=2/(1+u²) du

∫secxdx=∫dx/cosx=∫(1+u²)/(1–u²) ·2/(1+u²) du

=∫2/(1–u²)du=∫[1/(1+u)+1/(1–u)] du

=ln|1+u|–ln|1–u|+C

=ln|(1+tan(x/2))/(1–tan(x/2))|+C

=ln|(sin(x/2)+cos(x/2))/(sin(x/2)–cos(x/2))|+C

=ln|∨2sin(x/2+π/4)/(–∨2cos(x/2+π/4))|+C

=ln|tan(x/2+π/4)|+C

∫cscxdx=∫1/sinx dx=∫sinx/sin²x dx

=∫dcosx/(cos²x–1)

=1/2 ∫[1/(cosx–1)–1/(cosx+1)]dcosx

=1/2 ln|(cosx–1)/(cosx+1)|+C

=1/2ln|–2sin²(x/2)/(2cos²(x/2))|+C

=1/2 ln|tan²(x/2)|+C

=ln|tan(x/2)|+C

=ln|sin²(x/2)/(sin(x/2)cos(x/2))|+C

=ln|(1–cosx)/sinx|+C

=ln|cscx–cotx|+C

发表评论

评论列表

  • 拥嬉木落(2022-08-19 20:32:22)回复取消回复

                        y=cotx的图像secx为周期函数,最小正周期为2π,也是偶函数,定义域为{x|x≠kπ+π/2,k∈Z},值域为(–∞,–1]∪[1,+∞)在(2kπ–π/2,2kπ)单调递

  • 天女のキス1(2022-08-19 23:40:50)回复取消回复

    简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;

  • 晴枙债姬(2022-08-20 04:35:17)回复取消回复

    .导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值.十五、复数(4课时,4个)1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法高

  • 冬马颇倔(2022-08-19 21:23:49)回复取消回复

    课时,4个)1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法高中数学三角函数的图像和性质知识点总结已知函数f(x)=√3sinωx-cosωx(ω>0