斋藤康毅深度学习源码(斋藤康毅 自然语言处理)
本文目录一览:
有哪些 Python 经典书籍
【Python从入门到精通经典书籍推荐】
Python入门
目的:了解Python,学会用Python编程。
Python入门书众多,没必要全部阅读,根据介绍挑选合适自己的。PS:排名不分先后。
《Python编程入门:从入门到实践》
【同时使用Python 2.X和3.X讲解】
Amazon编程入门类榜首图书,最值得关注的Python入门书
从基本概念到完整项目开发,帮助零基础读者迅速掌握Python编程,开发实际项目
这本书分两部分:
第一部分介绍用Python编程所必须了解的基本概念,包括matplotlib、NumPy和Pygal等强大的Python库和工具介绍,以及列表、字典、if语句、类、文件与异常、代码测试等内容;
第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D游戏开发,如何利用数据生成交互式的信息图,以及创建和定制简单的Web应用,并帮读者解决常见编程问题和困惑。
《Python基础教程(第2版 · 修订版)》
【Python 2.5讲解,Python 3上也能运行】
各大网店最畅销的Python入门书
全书分为三部分。
第一部分讲述Python语法,没有废话,还掺入了一些Python 3.0要注意的细节。
第二部分介绍了常用的GUI、框架等应用,点到即止,算是为第三部分做铺垫了,从数目众多的应用中可以了解到Python的强大。
第三部分是Project,全书最大的亮点,大家肯定喜欢。
作者将前面讲述的内容应用到10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程,手把手教授Python开发。
《Python语言及其应用》
【 Python 3.X】
语言风格轻松诙谐,讲解多种Python工具和第三方库
实例涉及商业、科研以及艺术领域使用Python开发各种应用
亚马逊最受欢迎的Python编程书之一,评分4.5
书中首先介绍了Python的基础知识,然后逐渐深入多种主题,结合教程和攻略式风格来讲解Python 3中的概念。每章结尾的练习可以帮助你巩固所学的知识。
本书会为你学习Python打下坚实的基础,包括测试、调试、代码复用的最佳实践以及其他开发技巧。
《Python编程入门(第3版)》
【Python 3.X 】
从算术运算、字符串、变量,到函数、数据结构、输入输出和异常处理,应有尽有
《父与子的编程之旅:与小卡特一起学Python》
【Python 2.X 】
原版Amazon 最受欢迎的青少年编程图书
最简单易学的内容组织方式,老少皆宜
第一版获Jolt大奖
本书中,Warren和Carter父子以亲切的笔调、通俗的语言,透彻全面地介绍了计算机编程世界。
他们以简单易学的Python语言为例,通过可爱的漫画、有趣的例子,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等编程的基本概念。
只要懂得计算机的基本操作,如启动程序、保存文件,任何人都可以跟随本书,由简入难,学会编写程序,甚至制作游戏。
本书内容经过教育专家的评审,经过孩子的亲身检验,并得到了家长的认可。
《编程导论》
【Python 2.7 】
以麻省理工学院开放式课程(OpenCourseWare)中最受欢迎的计算机科学课程为基础,旨在培养读者的编程思维,使读者拥有计算机科学家的视野
本书涵盖了Python的大部分特性,重点介绍如何使用Python这门语言,共包含编程基础、Python程序设计语言、理解计算的关键概念、计算问题的解决技术等四个方面。
本书将Python语言特性和编程方法贯穿全书,目的是帮助读者在学习Python的同时掌握如何使用计算来解决有趣的问题。
Python进阶
需要一定Python基础。
《流畅的Python》
【兼顾Python 3和Python 2】
PSF研究员、知名PyCon演讲者心血之作
Python核心开发人员担纲技术审校
全面深入,对Python语言关键特性剖析到位
大量详尽代码示例,并附有主题相关高质量参考文献和视频链接
本书致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。
《Python项目开发实战(第2版)》
【Python 2.7】
网罗Python项目开发中的流程,让你的编程事半功倍
Python项目与封装/团队开发环境/问题驱动开发/源码管理(Mercurial) Jenkins持续集成(CI)/环境搭建与部署的自动化(Ansible)/Django框架……
这是一本偏工程的图书,没怎么讲Python语言基础知识,直接告诉你怎么搭建开发环境,做好代码管理和文档管理以及缺陷管理等工作。
《Python网络编程攻略》
【Python 2.7】
可作为任何一门网络编程课程中培养实践技能的补充材料
需要读者对Python语言及TCP/IP等基本的网络概念有了解,但即使不精通也能通过本书理解相关概念
本书全面介绍了Python网络编程涉及的重要问题,包括网络编程、系统和网络管理、网络监控以及Web应用开发。作者通过70多篇攻略,清晰简明地描述了各种网络任务和问题,提出了可用于多种场景的解决方案,并细致地分析了整个操作过程。
《Python网络编程(第3版)》
【Python 3.X】
涵盖网络编程所有经典话题,提供大量代码清单及示例
从应用开发角度介绍网络编程基本概念、模块以及第三方库
本书针对想要深入理解使用Python来解决网络相关问题或是构建网络应用程序的技术人员,结合实例讲解了网络协议、网络数据及错误、电子邮件、服务器架构和HTTP及Web应用程序等经典话题。
具体内容包括:全面介绍Python3中最新提供的SSL支持,异步I/O循环的编写,用Flask框架在Python代码中配置URL,跨站脚本以及跨站请求伪造攻击网站的原理及保护方法,等等。
《Python性能分析与优化》
【Python 2.X】
全面掌握Python代码性能分析和优化方法
消除性能瓶颈,迅速改善程序性能
本书首先介绍什么是性能分析,性能分析如何在项目开发周期中发挥作用,以及通过在项目中进行性能分析实践能够取得的效果。
紧接着介绍分析性能所需的核心工具(性能分析器和可视化性能分析器)。
然后介绍一系列性能优化技术,最后一章会介绍一个具有实际意义的优化案例。
《精通Python设计模式》
【Python 3.X】
用现实例子展示各模式的关键特性
16种基本设计模式,轻松解决软件设计常见问题
本书分三部分,共16章介绍一些常用的设计模式。
第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;
第二部分介绍处理一个系统中不同实体(类、对象等)之间关系的设计模式,包括外观模式、享元模式等;
第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。
《Flask Web开发:基于Python的Web应用开发实战》
【Python 2.7和3.3】
从安装与环境设置讲起,一步一步搭建服务器端Web应用
全流程讲解Web应用开发,给出最佳实践
本书共分三部分,全面介绍如何基于Python微框架Flask进行Web开发。
第一部分是Flask简介,介绍使用Flask框架及扩展开发Web程序的必备基础知识。
第二部分则给出一个实例,真正带领大家一步步开发完整的博客和社交应用Flasky,从而将前述知识融会贯通,付诸实践。
第三部分介绍了发布应用之前必须考虑的事项,如单元测试策略、性能分析技术、Flask程序的部署方式等。
《Python Web开发:测试驱动方法》
【(Django、Selenium)相关部分使用Python 3.3讲解】
亚马逊4.8星评好书
实战式TDD开发指南,使用Django等流行框架开发现代Web应用!
学习Django、Selenium、Git、jQuery和Mock,以及其他当前流行Web开发技术
“这本书很棒、很有趣,所讲的全都是重点知识。如果有人想用Python做测试、学习Django或者想使用Selenium,我极力推荐这本书。要使开发者保持头脑清醒,测试可谓至关重要。Harry完成了一项不可思议的工作,他不仅吸引了我们对测试的关注,而且还探索了切实可行的测试实践方案。”
——Michael Foord,Python核心开发者,unittest维护者
Python应用
用Python数据分析,数据处理,机器学习等等。
《数据科学入门》
【Python 2.7】
Google数据科学家、软件工程师Joel Grus作品
用Python从零开始讲解数据科学的重量级读本
数据科学、机器学习、模式识别领域必备
本书从零开始讲解数据科学。
具体内容包括Python简介,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法等。
作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,通过讲解基础数据科学工具和算法实现,带你快速跨入数据科学大门。
书中含大量数据科学领域的库、框架、模块和工具包。
《机器学习实战》
【Python 2.7】
最畅销机器学习图书
介绍并实现机器学习的主流算法
面向日常任务的高效实战内容
全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。
通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。
《机器学习系统设计》
【Python 2.7及以上】
微软Bing核心团队成员推出
聚焦算法编写和编程方式
结合大量实例学会解决实际问题
本书将向读者展示如何从原始数据中发现模式,首先从Python与机器学习的关系讲起,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。通过流行的开源库,我们可以掌握如何高效处理文本、图片和声音。同时,读者也能掌握如何评估、比较和选择适用的机器学习技术。
《Python数据处理》
【Python 2.7】
将数据处理过程自动化!
全面掌握用Python进行爬虫抓取以及数据清洗与分析的方法,轻松实现高效数据处理!
本书采用基于项目的方法,介绍用Python完成数据获取、数据清洗、数据探索、数据呈现、数据规模化和自动化的过程。
主要内容包括:Python基础知识,如何从CSV、Excel、XML、JSON和PDF文件中提取数据,如何获取与存储数据,各种数据清洗与分析技术,数据可视化方法,如何从网站和API中提取数据。
《Python数据分析基础教程:NumPy学习指南(第2版)》
【Python 2.7】
NumPy中文入门教程,Python数据分析首选
从最基础的知识讲起,手把手带你进入大数据挖掘领域
囊括大量具有启发性与实用价值的实战案例
本书从NumPy安装讲起,逐渐过渡到数组对象、常用函数、矩阵运算、线性代数、金融函数、窗函数、质量控制等内容,致力于向初中级Python编程人员全面讲述NumPy及其使用。
另外,通过书中丰富的示例,你还将学会Matplotlib绘图,并结合使用其他Python科学计算库(如SciPy和Scikits),让工作更有成效,让代码更加简洁而高效。
《Python数据挖掘入门与实践》
【Python 3.4】
全面释放Python的数据分析能力
掌握大数据时代核心技术,轻松入门数据挖掘技术并将其应用于实际项目
本书使用简单易学且拥有丰富第三方库和良好社区氛围的Python语言,由浅入深,以真实数据作为研究对象,真刀实枪地向读者介绍Python数据挖掘的实现方法。通过本书,读者将迈入数据挖掘的殿堂,透彻理解数据挖掘基础知识,掌握解决数据挖掘实际问题的最佳实践!
《Python科学计算基础教程》
【Python 2.7及以上】
精彩案例展示Numpy等科学计算模块的强大功能和广泛应用
剖析Python关于并行与大数据计算的方法
总结科学计算的任务、难点以及最佳实践经验
本书是将Python用于科学计算的实用指南,既介绍了相关的基础知识,又提供了丰富的精彩案例,并为读者总结了最佳实践经验。
其主要内容包括:科学计算的基本概念与选择Python的理由,科学工作流和科学计算的结构,科学项目相关数据的各个方面,用于科学计算的API和工具包,如何利用Python的NumPy和SciPy包完成数值计算,用Python做符号计算,数据分析与可视化,并行与大规模计算,等等。
《Python数据分析实战》
【Python 2.X】
了解Python在信息处理、管理和检索方面的强大功能
学会如何利用Python及其衍生工具处理、分析数据
三个真实Python数据分析案例,将理论付诸实践
《Python数据分析实战》展示了如何利用Python 语言的强大功能,以最小的编程代价进行数据的提取、处理和分析,主要内容包括:数据分析和Python 的基本介绍,NumPy 库,pandas 库,如何使用pandas 读写和提取数据,用matplotlib 库和scikit-learn 库分别实现数据可视化和机器学习,以实例演示如何从原始数据获得信息、D3 库嵌入和手写体数字的识别。
《Python网络数据采集》
【Python 3.X】
原书4.6星好评,一本书搞定数据采集
涵盖数据抓取、数据挖掘和数据分析
提供详细代码示例,快速解决实际问题
本书介绍网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导。
第一部分重点介绍网络数据采集的基本原理:如何用Python从网络服务器请求信息,如何对服务器的响应进行基本处理,以及如何以自动化手段与网站进行交互。
第二部分介绍如何用网络爬虫测试网站,自动化处理,以及如何通过更多的方式接入网络。
《Python计算机视觉编程》
【Python 2.6及以上】
亚马逊计算机视觉类图书No.1
详细剖析多种计算机视觉工具
大量示例极易上手
本书是计算机视觉编程的权威实践指南,通过Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、3D重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。
想学习Python要看什么书呢(我是初学者)?
1.《Python编程:从入门到实践》
这本书算是比较全面系统的入门Python教程。基本的概念解释得算是比较不错的,我们知道,对于零基础学习编程的人来说,基础的概念是最关键也是最重要的一部分,谁能把基本的概念讲得通俗易懂,那么谁也就自然受欢迎了。
2.《像计算机科学家一样思考Python》
本书更多的是想培养读者以计算机科学家一样的思维方式来理解Python语言编程。贯穿全书的主体是如何思考、设计、开发的方法。从基本的编程概念开始,一步步引导读者了解Python语言,再逐渐掌握函数、递归、数据结构和面向对象设计等高阶概念。
3.《Python编程:从入门到实践》
2016年出版的书,基于 Python3.5 同时也兼顾 Python2.7 ,书中涵盖的内容是比较精简的,没有艰深晦涩的概念,每个小结都附带练习题,它可以帮助你更快的上手编写程序,解决实际编程问题,上到有编程基础的程序员,下到10岁少年,想入门Python并达到可以开发实际项目的水平,这本书都是个不错的选择。
4.《Python核心编程第三版(中文版)》
该书向读者介绍了这种语言的核心内容,并展示了Python语言可以完成哪些任务。其主要内容包括:语法和编程风格、Python语言的对象、Web程序设计、执行环境等。该书条理清晰、通俗易懂,是学习Python语言的最好教材及参考手册。所附光盘包括Python语言最新的三个版本及书中示例代码。
5.《Python算法教程》
Python算法教程用Python语言来讲解算法的分析和设计。本书主要关注经典的算法,但同时会为读者理解基本算法问题和解决问题打下很好的基础。全书共11章。分别介绍了树、图、计数问题、归纳递归、遍历、分解合并、贪心算法、复杂依赖、Dijkstra算法、匹配切割问题以及困难问题及其稀释等内容。本书在每一章结束的时候均有练习题和参考资料,这为读者的自我检查以及进一步学习提供了较多的便利。在全书的结尾,给出了练习题的提示,方便读者进行查漏补缺。
从python基础到爬虫的书有什么值得推荐
于我个人而言,我很喜欢Python,当然我也有很多的理由推荐你去学python.我只说两点.一是简单,二是写python薪资高.我觉得这俩理由就够了,对不对.买本书,装上pycharm,把书上面的例子习题都敲一遍.再用flask,web.py等框架搭个小网站.. 完美...(小伙伴们有问到该学python2.7还是3.X,那我的答案是:目前大多数实际开发,都是用2.7的,因为实际项目开发有很多依赖的包,都只支持到2.7,你用3.X干不了活.那你能怎么办.所以不需要纠结.等3.X普及,你写的2.7代码,都可以无痛移植,妥妥的不用担心.)
第一个
个人认为《Python学习手册:第3版》是学习语言基础比较好的书了.
《Python学习手册(第3版)》讲述了:Python可移植、功能强大、易于使用,是编写独立应用程序和脚本应用程序的理想选择。无论你是刚接触编程或者刚接触Python,通过学习《Python学习手册(第3版)》,你可以迅速高效地精通核心Python语言基础。读完《Python学习手册(第3版)》,你会对这门语言有足够的了解,从而可以在你所从事的任何应用领域中使用它。
《Python学习手册(第3版)》是作者根据过去10年用于教学而广为人知的培训课程的材料编写而成的。除了有许多详实说明和每章小结之外,每章还包括一个头脑风暴:这是《Python学习手册(第3版)》独特的一部分,配合以实用的练习题和复习题,让读者练习新学的技巧并测试自己的理解程度。
《Python学习手册(第3版)》包括:
类型和操作——深入讨论Python主要的内置对象类型:数字、列表和字典等。
语句和语法——在Python中输入代码来建立并处理对象,以及Python一般的语法模型。
函数——Python基本的面向过程工具,用于组织代码和重用。
模块——封装语句、函数以及其他工具,从而可以组织成较大的组件。
类和OOP——Python可选的面向对象编程工具,可用于组织程序代码从而实现定制和重用。
异常和工具——异常处理模型和语句,并介绍编写更大程序的开发工具。
讨论Python 3.0。
《Python学习手册(第3版)》让你对Python语言有深入而完整的了解,从而帮助你理解今后遇到的任何Python应用程序实例。如果你准备探索Google和YouTube为什么选中了Python,《Python学习手册(第3版)》就是你入门的最佳指南。
第二个
《Python基础教程(第2版·修订版)》也是经典的Python入门教程,层次鲜明,结构严谨,内容翔实,特别是最后几章,作者将前面讲述的内容应用到10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程,手把手教授Python开发,让读者从项目中领略Python的真正魅力。这本书既适合初学者夯实基础,又能帮助Python程序员提升技能,即使是Python方面的技术专家,也能从书里找到耳目一新的内容。
第三个
《“笨办法”学Python(第3版)》是一本Python入门书籍,适合对计算机了解不多,没有学过编程,但对编程感兴趣的初学者使用。这本书结构非常简单,其中覆盖了输入/输出、变量和函数三个主题,以及一些比较高级的话题,如条件判断、循环、类和对象、代码测试及项目的实现等。每一章的格式基本相同,以代码习题开始,按照说明编写代码,运行并检查结果,然后再做附加练习。这本书以习题的方式引导读者一步一步学习编程,从简单的打印一直讲授到完整项目的实现,让初学者从基础的编程技术入手,最终体验到软件开发的基本过程。
【大牛评价】hardway(笨办法)比较适合起步编程,作为Python的入门挺不错。
第四个
在这里给大家推荐最后一本《集体智慧编程》
本书以机器学习与计算统计为主题背景,专门讲述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论,通过复杂的算法来从Web网站获取、收集并分析用户的数据和反馈信息,以便创造新的用户价值和商业价值。
全书内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过滤)、用决策树技术实现预测和决策建模功能、社交网络的信息匹配技术、机器学习和人工智能应用等。
本书是Web开发者、架构师、应用工程师等的绝佳选择。
“太棒了!对于初学这些算法的开发者而言,我想不出有比这本书更好的选择了,而对于像我这样学过Al的老朽而言,我也想不出还有什么更好的办法能够让自己重温这些知识的细节。”
——Dan Russell,资深技术经理,Google
“Toby的这本书非常成功地将机器学习算法这一复杂的议题拆分成了一个个既实用又易懂的例子,我们可以直接利用这些例子来分析当前网络上的社会化交互作用。假如我早两年读过这本书,就会省去许多宝贵的时间,也不至于走那么多的弯路了。”
——Tim Wolters,CTO,Collective Intellect
第五个
其实我觉得很多人也在看《Python核心编程:第2版》.在我自己看来,我并不喜欢这本书.
这本书的原书的勘误表就有够长的,翻译时却几乎没有参考勘误表,把原书的所有低级错误都搬进去了。这本书的原书质量也并不好,书的结构组织并不合理,不适合初学者阅读。有人说,这本书适合进阶阅读,我觉得也不尽然。这本书很多地方都写的欲言又止的,看得人很郁闷。