化工热力学实验思考题及答案(化工热力学选择题答案)
本文目录一览:
- 1、【求助】>化工热力学 课后答案 化学工业出版社 冯新 宣爱国?
- 2、《化工热力学》第三版课后习题答案,陈钟秀 顾飞燕 胡望明 编著,化学工业出版社
- 3、求化工热力学导论 课后答案 ([美] J.M.Smith)
- 4、《 化工热力学 》 一、请学生运用所学的化工热力学知识,从以下给定的题目中选择至少选择2个题目进行论述
- 5、化工热力学课后答案(马沛生)第二版
【求助】>化工热力学 课后答案 化学工业出版社 冯新 宣爱国?
第2章P-V-T关系和状态方程一、是否题1. 纯物质由蒸汽变成固体,必须经过液相。(错。如可以直接变成固体。)2. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。)3. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是超临界流 体。)4. 由于分子间相互作用力的存在,实际气体的摩尔体积一定小于同温同压下的理想气体的摩尔体积,所 以,理想气体的压缩因子Z=1,实际气体的压缩因子Z1。(错。如温度大于Boyle温度时,Z>1。)5. 理想气体的 虽然与P无关,但与V有关。(对。因。)6. 纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸汽的摩尔体积随着温度的升高而减小。(对。则纯物质的P-V相图上的饱和汽体系和饱和液体系曲线可知。)7. 纯物质的三相点随着所处的压力或温度的不同而改变。(错。纯物质的三相平衡时,体系自由度是 零,体系的状态已经确定。)8. 在同一温度下,纯物质的饱和液体与饱和蒸汽的热力学能相等。(错。它们相差一个汽化热力学能, 当在临界状态时,两者相等,但此时已是汽液不分)9. 在同一温度下,纯物质的饱和液体与饱和蒸汽的吉氏函数相等。(对。这是纯物质的汽液平衡准 则。)10. 若一个状态方程能给出纯流体正确的临界压缩因子,那么它就是一个优秀的状态方程。(错。)11. 纯物质的平衡汽化过程,摩尔体积、焓、热力学能、吉氏函数的变化值均大于零。(错。只有吉氏函 数的变化是零。)12. 气体混合物的virial系数,如B,C…,是温度和组成的函数。(对。)13. 三参数的对应态原理较两参数优秀,因为前者适合于任何流体。(错。三对数对应态原理不能适用于 任何流体,一般能用于正常流体normal fluid)14. 在压力趋于零的极限条件下,所有的流体将成为简单流体。(错。简单流体系指一类非极性的球形 流,如Ar等,与所处的状态无关。)第二章题目依然一样,有这么巧合的吗,还是楼主太挑剔版面了?
《化工热力学》第三版课后习题答案,陈钟秀 顾飞燕 胡望明 编著,化学工业出版社
第二章
2-1.使用下述方法计算1kmol甲烷贮存在体积为0.1246m3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K方程;(3)普遍化关系式。
解:甲烷的摩尔体积V=0.1246 m3/1kmol=124.6 cm3/mol
查附录二得甲烷的临界参数:Tc=190.6K Pc=4.600MPa Vc=99 cm3/mol ω=0.008
(1) 理想气体方程
P=RT/V=8.314×323.15/124.6×10-6=21.56MPa
(2) R-K方程
∴
=19.04MPa
(3) 普遍化关系式
<2
∴利用普压法计算,
∵
∴
迭代:令Z0=1→Pr0=4.687 又Tr=1.695,查附录三得:Z0=0.8938 Z1=0.4623
=0.8938+0.008×0.4623=0.8975
此时,P=PcPr=4.6×4.687=21.56MPa
同理,取Z1=0.8975 依上述过程计算,直至计算出的相邻的两个Z值相差很小,迭代结束,得Z和P的值。
∴ P=19.22MPa
2-2.分别使用理想气体方程和Pitzer普遍化关系式计算510K、2.5MPa正丁烷的摩尔体积。已知实验值为37017.5px3/mol。
解:查附录二得正丁烷的临界参数:Tc=425.2K Pc=3.800MPa Vc=99 cm3/mol ω=0.193
(1)理想气体方程
V=RT/P=8.314×510/2.5×106=1.696×10-3m3/mol
误差:
(2)Pitzer普遍化关系式
对比参数: —普维法
∴
=-0.2326+0.193×0.05874=-0.2213
=1-0.2213×0.6579/1.199=0.8786
∴ PV=ZRT→V= ZRT/P=0.8786×8.314×510/2.5×106=1.49×10-3 m3/mol
误差:
2-3.生产半水煤气时,煤气发生炉在吹风阶段的某种情况下,76%(摩尔分数)的碳生成二氧化碳,其余的生成一氧化碳。试计算:(1)含碳量为81.38%的100kg的焦炭能生成1.1013MPa、303K的吹风气若干立方米?(2)所得吹风气的组成和各气体分压。
解:查附录二得混合气中各组分的临界参数:
一氧化碳(1):Tc=132.9K Pc=3.496MPa Vc=93.1 cm3/mol ω=0.049 Zc=0.295
二氧化碳(2):Tc=304.2K Pc=7.376MPa Vc=94.0 cm3/mol ω=0.225 Zc=0.274
又y1=0.24,y2=0.76
∴(1)由Kay规则计算得:
—普维法
利用真实气体混合物的第二维里系数法进行计算
又
∴
∴
∴→V=0.02486m3/mol
∴V总=n V=100×103×81.38%/12×0.02486=168.58m3
(2)
2-4.将压力为2.03MPa、温度为477K条件下的2.83m3NH3压缩到0.142 m3,若压缩后温度448.6K,则其压力为若干?分别用下述方法计算:(1)Vander Waals方程;(2)Redlich-Kwang方程;(3)Peng-Robinson方程;(4)普遍化关系式。
解:查附录二得NH3的临界参数:Tc=405.6K Pc=11.28MPa Vc=72.5 cm3/mol ω=0.250
(1) 求取气体的摩尔体积
对于状态Ⅰ:P=2.03 MPa、T=447K、V=2.83 m3
—普维法
∴
→V=1.885×10-3m3/mol
∴n=2.83m3/1.885×10-3m3/mol=1501mol
对于状态Ⅱ:摩尔体积V=0.142 m3/1501mol=9.458×10-5m3/mol T=448.6K
(2) Vander Waals方程
(3) Redlich-Kwang方程
(4) Peng-Robinson方程
∵
∴
∴
(5) 普遍化关系式
∵ <2 适用普压法,迭代进行计算,方法同1-1(3)
2-6.试计算含有30%(摩尔分数)氮气(1)和70%(摩尔分数)正丁烷(2)气体混合物7g,在188℃、6.888MPa条件下的体积。已知B11=350px3/mol,B22=-6625px3/mol,B12=-9.125px3/mol。
解:
→V(摩尔体积)=4.24×10-4m3/mol
假设气体混合物总的摩尔数为n,则
0.3n×28+0.7n×58=7→n=0.1429mol
∴V= n×V(摩尔体积)=0.1429×4.24×10-4=60.57 cm3
2-8.试用R-K方程和SRK方程计算273K、101.3MPa下氮的压缩因子。已知实验值为2.0685
解:适用EOS的普遍化形式
查附录二得NH3的临界参数:Tc=126.2K Pc=3.394MPa ω=0.04
(1)R-K方程的普遍化
∴ ①
②
①、②两式联立,迭代求解压缩因子Z
(2)SRK方程的普遍化
∴ ①
②
①、②两式联立,迭代求解压缩因子Z
第三章
3-1. 物质的体积膨胀系数和等温压缩系数的定义分别为:,。试导出服从Vander Waals状态方程的和的表达式。
解:Van der waals 方程
由Z=f(x,y)的性质得
又
所以
故
3-2. 某理想气体借活塞之助装于钢瓶中,压力为34.45MPa,温度为93℃,反抗一恒定的外压力3.45 MPa而等温膨胀,直到两倍于其初始容积为止,试计算此过程之、、、、、、、Q和W。
解:理想气体等温过程,=0、=0
∴ Q=-W==2109.2 J/mol
∴ W=-2109.2 J/mol
又 理想气体等温膨胀过程dT=0、
∴
∴ =5.763J/(mol·K)
=-366×5.763=-2109.26 J/(mol·K)
=-2109.26 J/(mol·K)
=-2109.26 J/(mol·K)
=2109.2 J/mol
3-3. 试求算1kmol氮气在压力为10.13MPa、温度为773K下的内能、焓、熵、、和自由焓之值。假设氮气服从理想气体定律。已知:
(1)在0.1013 MPa时氮的与温度的关系为;
(2)假定在0℃及0.1013 MPa时氮的焓为零;
(3)在298K及0.1013 MPa时氮的熵为191.76J/(mol·K)。
3-4. 设氯在27℃、0.1 MPa下的焓、熵值为零,试求227℃、10 MPa下氯的焓、熵值。已知氯在理想气体状态下的定压摩尔热容为
解:分析热力学过程
-H1R H2R
-S1R S2R
查附录二得氯的临界参数为:Tc=417K、Pc=7.701MPa、ω=0.073
∴(1)300K、0.1MPa的真实气体转换为理想气体的剩余焓和剩余熵
Tr= T1/ Tc=300/417=0.719 Pr= P1/ Pc=0.1/7.701=0.013—利用普维法计算
又
代入数据计算得=-91.41J/mol、=-0.2037 J/( mol·K)
(2)理想气体由300K、0.1MPa到500K、10MPa过程的焓变和熵变
=7.02kJ/mol
=-20.39 J/( mol·K)
(3) 500K、10MPa的理想气体转换为真实气体的剩余焓和剩余熵
Tr= T2/ Tc=500/417=1.199 Pr= P2/ Pc=10/7.701=1.299—利用普维法计算
又
代入数据计算得=-3.41KJ/mol、=-4.768 J/( mol·K)
∴=H2-H1= H2=-++=91.41+7020-3410=3.701KJ/mol
= S2-S1= S2=-++=0.2037-20.39-4.768=-24.95 J/( mol·K)
3-5. 试用普遍化方法计算二氧化碳在473.2K、30 MPa下的焓与熵。已知在相同条件下,二氧化碳处于理想状态的焓为8377 J/mol,熵为-25.86 J/(mol·K).
解:查附录二得二氧化碳的临界参数为:Tc=304.2K、Pc=7.376MPa、ω=0.225
∴ Tr= T/ Tc=473.2/304.2=1.556 Pr= P/ Pc=30/7.376=4.067—利用普压法计算
查表,由线性内插法计算得出:
∴由、计算得:
HR=-4.377 KJ/mol SR=-7.635 J/( mol·K)
∴H= HR+ Hig=-4.377+8.377=4 KJ/mol
S= SR+ Sig=-7.635-25.86=-33.5 J/( mol·K)
3-6. 试确定21℃时,1mol乙炔的饱和蒸汽与饱和液体的U、V、H和S的近似值。乙炔在0.1013MPa、0℃的理想气体状态的H、S定为零。乙炔的正常沸点为-84℃,21℃时的蒸汽压为4.459MPa。
3-7. 将10kg水在373.15K、0.1013 MPa的恒定压力下汽化,试计算此过程中、、、和之值。
3-8. 试估算纯苯由0.1013 MPa、80℃的饱和液体变为1.013 MPa、180℃的饱和蒸汽时该过程的、和。已知纯苯在正常沸点时的汽化潜热为3.733 J/mol;饱和液体在正常沸点下的体积为95.7 cm3/mol;定压摩尔热容;第二维里系数。
解:1.查苯的物性参数:Tc=562.1K、Pc=4.894MPa、ω=0.271
2.求ΔV
由两项维里方程
3.计算每一过程焓变和熵变
(1)饱和液体(恒T、P汽化)→饱和蒸汽
ΔHV=30733KJ/Kmol
ΔSV=ΔHV/T=30733/353=87.1 KJ/Kmol·K
(2)饱和蒸汽(353K、0.1013MPa)→理想气体
∵
点(Tr、Pr)落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。
由式(3-61)、(3-62)计算
∴
∴
(3)理想气体(353K、0.1013MPa)→理想气体(453K、1.013MPa)
(4)理想气体(453K、1.013MPa)→真实气体(453K、1.013MPa)
点(Tr、Pr)落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。
由式(3-61)、(3-62)计算
∴
4.求
3-9. 有A和B两个容器,A容器充满饱和液态水,B容器充满饱和蒸气。两个容器的体积均为1L,压力都为1MPa。如果这两个容器爆炸,试问哪一个容器被破坏的更严重?假定A、B容器内物质做可逆绝热膨胀,快速绝热膨胀到0.1 MPa。
3-10. 一容器内的液体水和蒸汽在1MPa压力下处于平衡状态,质量为1kg。假如容器内液体和蒸汽各占一半体积,试求容器内的液体水和蒸汽的总焓。
解:查按压力排列的饱和水蒸汽表,1MPa时,
根据题意液体和蒸汽各占一半体积,设干度为x
则
解之得:
所以
3-11. 过热蒸汽的状态为533Khe 1.0336MPa,通过喷嘴膨胀,出口压力为0.2067MPa,如果过程为可逆绝热且达到平衡,试问蒸汽在喷嘴出口的状态如何?
3-12. 试求算366K 、2.026MPa 下1mol乙烷的体积、焓、熵与内能。设255K 、0.1013MPa时乙烷的焓、熵为零。已知乙烷在理想气体状态下的摩尔恒压热容
3-13. 试采用RK方程求算在227℃、5 MPa下气相正丁烷的剩余焓和剩余熵。
解:查附录得正丁烷的临界参数:Tc=425.2K、Pc=3.800MPa、ω=0.193
又R-K方程:
∴
∴
试差求得:V=5.61×10-4m3/mol
∴
∴
∴
3-14. 假设二氧化碳服从RK状态方程,试计算50℃、10.13 MPa时二氧化碳的逸度。
解:查附录得二氧化碳的临界参数:Tc=304.2.2K、Pc=7.376MPa
∴
又
∴
迭代求得:V=294.9cm3/mol
∴
∴
∴
∴f=4.869MPa
3-15. 试计算液态水在30℃下,压力分别为(a)饱和蒸汽压、(b)100×105Pa下的逸度和逸度系数。已知:(1)水在30℃时饱和蒸汽压pS=0.0424×105Pa;(2)30℃,0~100×105Pa范围内将液态水的摩尔体积视为常数,其值为0.01809m3/kmol;(3)1×105Pa以下的水蒸气可以视为理想气体。
解:(a)30℃,Ps=0.0424×105Pa
∵汽液平衡时,
又1×105Pa以下的水蒸气可以视为理想气体,Ps=0.0424×105Pa<1×105Pa
∴30℃、0.0424×105Pa下的水蒸气可以视为理想气体。
又 理想气体的fi=P
∴
(b)30℃,100×105Pa
∵
∴
3-16. 有人用A和B两股水蒸汽通过绝热混合获得0.5MPa的饱和蒸汽,其中A股是干度为98%的湿蒸汽,压力为0.5MPa,流量为1kg/s;而B股是473.15K,0.5MPa的过热蒸汽,试求B股过热蒸汽的流量该为多少?
解:A股:查按压力排列的饱和水蒸汽表, 0.5MPa(151.9℃)时,
B股: 473.15K,0.5MPa的过热蒸汽
根据题意,为等压过程,
忽略混合过程中的散热损失,绝热混合 Qp = 0,所以 混合前后焓值不变
设B股过热蒸汽的流量为 x kg/s,以1秒为计算基准,列能量衡算式
解得:
该混合过程为不可逆绝热混合,所以 混合前后的熵值不相等。
只有可逆绝热过程,
因为是等压过程,该题也不应该用 进行计算。
第四章
4-1. 在20℃、0.1013MPa时,乙醇(1)与H2O(2)所形成的溶液其体积可用下式表示:
。试将乙醇和水的偏摩尔体积、表示为浓度x2的函数。
解:由二元溶液的偏摩尔性质与摩尔性质间的关系:
得:
又
所以
4-2. 某二元组分液体混合物在固定T及P下的焓可用下式表示:。式中,H单位为J/mol。试确定在该温度、压力状态下(1)用x1表示的和;(2)纯组分焓H1和H2的数值;(3)无限稀释下液体的偏摩尔焓和的数值。
解:(1)已知 (A)
用x2=1- x1带入(A),并化简得: (B)
由二元溶液的偏摩尔性质与摩尔性质间的关系:
,
得: ,
由式(B)得:
所以 (C) (D)
(2)将x1=1及x1=0分别代入式(B)得纯组分焓H1和H2
(3)和是指在x1=0及x1=1时的和,将x1=0代入式(C)中得:,将x1=1代入式(D)中得:。
4-3. 实验室需要配制30000px3防冻溶液,它由30%的甲醇(1)和70%的H2O(2)(摩尔比)组成。试求需要多少体积的25℃的甲醇与水混合。已知甲醇和水在25℃、30%(摩尔分数)的甲醇溶液的偏摩尔体积:,。25℃下纯物质的体积:,。
解:由得:
代入数值得:V=0.3×38.632+0.7×17.765=24.03cm3/mol
配制防冻溶液需物质的量:
所需甲醇、水的物质的量分别为:
则所需甲醇、水的体积为:
将两种组分的体积简单加和:
则混合后生成的溶液体积要缩小:
4-4. 有人提出用下列方程组表示恒温、恒压下简单二元体系的偏摩尔体积:
式中,V1和V2是纯组分的摩尔体积,a、b只是T、P的函数。试从热力学角度分析这些方程是否合理?
解:根据Gibbs-Duhem方程 得
恒温、恒压下
或
由题给方程得 (A)
(B)
比较上述结果,式(A)≠式(B),即所给出的方程组在一般情况下不满足Gibbs-Duhem方程,故不合理。
4-5.试计算甲乙酮(1)和甲苯(2)的等分子混合物在323K和2.5×104Pa下的、和f。
4-6.试推导服从van der waals 方程的气体的逸度表达式。
4-9.344.75K时,由氢和丙烷组成的二元气体混合物,其中丙烷的摩尔分数为0.792,混合物的压力为3.7974MPa。试用RK方程和相应的混合规则计算混合物中氢的逸度系数。已知氢-丙烷系的kij=0.07, 的实验值为1.439。
解:已知混合气体的T=344.75K P=3.7974MPa,查附录二得两组分的临界参数
氢(1): y1=0.208 Tc=33.2K Pc=1.297MPa Vc=65.0 cm3/mol ω=-0.22
丙烷(2):y1=0.792 Tc=369.8K Pc=4.246MPa Vc=203 cm3/mol ω=0.152
∴
∵
∴
①
②
联立①、②两式,迭代求解得:Z=0.7375 h=0.09615
所以,混合气体的摩尔体积为:
∴
分别代入数据计算得:
4-10.某二元液体混合物在固定T和P下其超额焓可用下列方程来表示:HE=x1x2(40x1+20x2).其中HE的单位为J/mol。试求和(用x1表示)。
4-12.473K、5MPa下两气体混合物的逸度系数可表示为:。式中y1和y2为组分1和组分2 的摩尔分率,试求、的表达式,并求出当y1 =y2=0.5时,、各为多少?
4-13.在一固定T、P下,测得某二元体系的活度系数值可用下列方程表示: (a)
(b)
试求出的表达式;并问(a)、(b)方程式是否满足Gibbs-Duhem方程?若用(c)、(d)方程式表示该二元体系的活度数值时,则是否也满足Gibbs-Duhem方程?
(c)
(d)
4-17.测得乙腈(1)—乙醛(2)体系在50℃到100℃的第二维里系数可近似地用下式表示:
式中,T的单位是K,B的单位是cm3mol。试计算乙腈和乙醛两组分的等分子蒸气混合物在0.8×105Pa和80℃时的与。
例1.某二元混合物在一定T、P下焓可用下式表示:。其中a、b为常数,试求组分1的偏摩尔焓的表示式。
解:根据片摩尔性质的定义式
又
所以
例2.312K、20MPa条件下二元溶液中组分1的逸度为,式中x1是组分1的摩尔分率,的单位为MPa。试求在上述温度和压力下(1)纯组分1 的逸度和逸度系数;(2)组分1 的亨利常数k1;(3)活度系数与x1的关系式(组分1的标准状态时以Lewis-Randall定则为基准)。
解:在给定T、P下,当x1=1时
根据定义
(2)根据公式
得
(3)因为
所以
例3.在一定的T、P下,某二元混合溶液的超额自由焓模型为(A)式中x为摩尔分数,试求:(1)及的表达式;(2)、的值;(3)将(1)所求出的表达式与公式相结合,证明可重新得到式(A)。
解:(1)
∴
同理得
(2)当x1→0时得
当x2→0时得
(3)
例4已知在298K时乙醇(1)与甲基叔丁基醚(2)二元体系的超额体积为,纯物质的体积V1=58.63cm3·mol-1, V2=118.46cm3·mol-1,试问当1000 cm3的乙醇与500 cm3的甲基叔丁基醚在298K下混合时其体积为多少?
解:依题意可得
n1=1000/58.63=17.056mol
n2=500/118.46=4.221mol
n=n1+n2=17.056+4.221=21.227mol
∴ x1= n1/n=17.056/21.227=0.802
x2= n2/n=4.221/21.227=0.198
由于x1+x2=1,所以
=0.802×0.198×[-0.806×0.802-1.264×0.198]
=-0.142 cm3·mol-1
混合时体积Vt=n1V1+n2V2+nVE
=1000+500+21.227× (-0.142)
=1496.979 cm3
若将两种组分的体积简单加和,将为1500 cm3,而形成溶液时则为1496.979 cm3,体积要缩小0.202%。
求化工热力学导论 课后答案 ([美] J.M.Smith)
答案家论坛有这答案,在大学答案的热学栏目下面就可以看到了
《 化工热力学 》 一、请学生运用所学的化工热力学知识,从以下给定的题目中选择至少选择2个题目进行论述
.教材中给出了众多的状态方程,请根据本人的工作或者生活选择一个体系、选择一个状态方程、对其PVT关系的计算准确度进行分析,并提出改进的方向和意见。 2.根据功热转换的原理,选择一个体系或者工况进行节能过程分析。要求给出详细的计算步骤和过程分析。知识点提示:选择一个热工转换或者制冷、热泵系统,运用热力学第一定律、热力学第二定律进行过程计算。 3.为含苯酚的水溶液处理过程选择合适的相平衡计算方法,给出详细的计算过程和步骤,并对其结果进行分析和讨论。知识点提示:根据本体系的性质选择逸度系数法或者活度系数法进行相平衡的计算,一定要对方法的选择给出依据,并进行准确的计算。4.为石油化工过程中的含有乙烯、乙烷、丙烯、丙烷、丁烷、丁烯-1的混合物的分离过程选择合适的相平衡计算方法,给出详细的计算过程和步骤,并对其结果进行分析和讨论。知识点提示:根据本体系的性质选择逸度系数法或者活度系数法进行相平衡的计算,一定要对方法的选择给出依据,并进行准确的计算。5.通过实验测定了一系列的相平衡数据,请给出判定该数据有无大的错误的方法,要求有详细的方法、步骤、结论。知识点提示:利用第六章的吉布斯-杜亥姆方程进行讨论。二、要求:1、首先给出分析这一问题的化工热力学基础知识2、给出详细的计算步骤3、对问题进行详细的分析4、字数不少于2000字或者篇幅不少于2页。5、写出你所应用的文献的出处。
化工热力学课后答案(马沛生)第二版
你看一下 看版本对没有 呵呵 我的权限也不够 不然就给你下载了