b2c信息网

您现在的位置是:首页 > 大豆信息 > 正文

大豆信息

光合作用知识点(光合作用知识点手写笔记)

hacker2022-06-12 01:09:22大豆信息79
本文目录一览:1、求呼吸作用与光合作用的详细知识点〔生物必修一〕

本文目录一览:

求呼吸作用与光合作用的详细知识点〔生物必修一〕

1、光合作用过程(光反应和暗反应的物质变化和能量变化)

2、光反应和暗反应的关系。

3、影响光反应的因素。

4、呼吸作用类型及其实验证明(探究)

5、有氧呼吸过程(物质变化,能量变化)

6、有氧呼吸和无氧呼吸计算

7、光合作用和呼吸作用之间的关系(叶绿体和线粒体间的关系)

8、关于光合作用和呼吸作用的计算。

高中生物的光合作用知识点

光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的囊状结构薄膜上进行的。

在光反应阶段中,叶绿体中的色素吸收光能,这些光能有两方面的用途:一方面是将水分子分解成氧和氢[H],氧直接以分子的形式释放出去,而氢[H]则被传递到叶绿体内的基质中,作为活泼的还原剂,参与到第二个阶段中的化学反应中去;另一方面是在有关酶的催化作用下,促成ADP与Pi发生化学反应,形成ATP。这里,光能转变为化学能并且储存在ATP中。这些ATP将参与到第二个阶段中的化学反应中去。

暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。

在暗反应阶段中,绿叶从外界吸收来的二氧化碳,不能直接被氢[H]还原。它必须首先与植物体内的一种含有五个碳原子的化合物(简称五碳化合物,用C5表示)结合,这个过程叫做二氧化碳的固定。一个二氧化碳分子被一个五碳化合物分子固定以后,很快形成两个含有三个碳原子的化合物(简称三碳化合物,用C3表示)。在有关酶的催化作用下,三碳化合物接受ATP释放出的能量并且被氢[H]还原。其中,一些三碳化合物经过一系列变化,形成糖类;另一些三碳化合物则经过复杂的变化,又形成五碳化合物,从而使暗反应阶段的化学反应循环往复地进行下去。

植物光合作用的知识有哪些?

植物的光合作用是指植物利用太阳光能,以水和二氧化碳为原料,合成碳水化合物,再加工转化成淀粉、糖、脂肪、蛋白质、纤维素、维生素等,并分解出大量的氧气。这些物质是人和动物赖以生存的基础光合作用(Photosynthesis),即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而在地球上的碳-氧循环,(保持氧气和二氧化碳含量的相对稳定)光合作用是必不可少的。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳-氧平衡(即二氧化碳与氧气的平衡)的重要媒介。光合作用可分为产氧光合作用和不产氧光合作用。

高中生物光合作用的知识点

高中生物必修一光合作用知识点 符号编号排版地图

第五章 细胞的能量供应和利用 第四节 能量之源——光与光合作用

一、应牢记知识点

1、追根溯源,绝大多数活细胞所需能量的最终源头是太阳光能。

2、将光能转换成细胞能利用的化学能的是光合作用。

3、叶绿体中的色素及吸收光谱

⑴、叶绿素(含量约占3/4)

①、叶绿素a ——蓝绿色——主要吸收蓝紫光和红光

②、叶绿素b ——黄绿色——主要吸收蓝紫光和红光

⑵、类胡萝卜素(含量约占1/4)

①、胡萝卜素——橙黄色——主要吸收蓝紫光

②、叶黄素——黄色——主要吸收蓝紫光

4、叶绿体中色素的提取和分离

⑴、提取方法:丙酮做溶剂。

⑵、碳酸钙的作用:防止研磨过程中破坏色素。

⑶、二氧化硅作用:使研磨更充分。

⑷、分离方法:纸层析法

⑸、层析液:20份石油醚 :2份酒精 :1份丙酮混合

⑹、层析结果:从上到下——胡黄ab

⑺、滤液细线要求:细、均匀、直

⑻、层析要求:层析液不能没及滤液细线。

5、叶绿体中光和色素的分布——叶绿体类囊体薄膜上

6、光合作用场所——叶绿体

叶绿体是光合作用的场所;

叶绿体基粒类囊体膜上,分布着与光化作用有关的色素和酶。

7、光合作用概念:

是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧气的过程。

8、光合作用反应式:

光能

CO2 + H2O ——→ (CH2O)+ O2

叶绿体

光能

6CO2 + 12H2O ——→C6H12O6 + 6H2O + 6O2

叶绿体

9、1771年,英国科学家普利斯特利(J .Priestly,1773—1804)实验证实:植物能更新空气。

10、荷兰科学家英格豪斯(J .Ingen – housz)发现:只有在阳光照射下,只有绿叶才能更新空气。

11、1785年明确了:绿叶在光下吸收二氧化碳,释放氧气。

12、1845年,各国科学家梅耶(R .Mayer)指出:植物进行光合作用时,把光能转换成化学能储存起来。

13、1864年,德国科学家萨克斯(J .von .Sachs,1832——1897)实验证明:光合作用产生淀粉。

⑴、饥饿处理——将绿叶置于暗处数小时,耗尽其营养。

⑵、遮光处理——绿叶一半遮光,一半不遮光。

⑶、光照数小时——将绿叶放在光下,使之能进行光合作用。

⑷、碘蒸汽处理——遮光的一半无颜色变化,暴光的一侧边蓝绿色。

14、1939年,美国科学家鲁宾(S .Ruben)卡门(M .Kamen)同位素标记法实验证明:光合作用释放的

氧气来自水。

⑴、同位素标记法三要点:

①、用途:指用放射性同位素追踪物质的运行和变化规律。

②、方法:放射性同位素能发出射线,可以用仪器检测到。

③、特点:放射性同位素标记的化合物化学性质不改变,不影响细胞的代谢。

⑵、用18O标记H2O和CO2,得到H218O和C18O2。

⑶、将植物分成两组,一组提供H218O,另一组提供C18O2。

⑷、在其他条件都相同的情况下,分别检测植物释放的O2。

⑸、结果,只有提供H218O时,植物释放出18O2。

15、卡尔文循环——卡尔文(M .Calvin,1911——)实验

⑴、用14C标记CO2得14CO2

⑵、向小球藻提供14CO2,追踪光和作用过程中C的运动途径。

14CO2 —→14C3—→14C6H12O6

⑶、结论:

16、光合作用过程

⑴、光合作用包括:光反应、暗反应两个阶段。

⑵、光反应:

①、特点:指光合作用第一阶段,必须有光才能进行。

②、主要反应:色素分子吸收光能;分解水,产生[ H ]和氧气;生成ATP。

③、场所:叶绿体基粒囊状膜上。

④、能量变化:光能转变成ATP中活跃化学能。

⑶、暗反应

①、特点:指光合作用第二阶段,有光无光都能进行。

②、主要反应:固定二氧化碳生成三碳化合物;[ H ]做还原剂,ATP提供能量,

还原三碳化合物,生成有机物和水。

③、场所:叶绿体基质中。

④、能量变化:活跃化学能转变成有机物中稳定化学能。

⑷、过程图(P-103图5-15)

二、应会知识点

1、光合作用中色素的吸收峰(P-99图5-10)

2、叶绿体结构(P-99图5-11)

⑴、具有内外双层膜。

⑵、具有基粒——由类囊体色素。

⑶、二氧化硅作用:使研磨更充分。

3、化能合成作用

⑴、概念:指利用环境中某些无机物氧化时释放的能量,将二氧化碳和水制造成储存能量的有机物的合成作用。

⑵、典型生物:硝化细菌、铁细菌、瘤细菌等。

⑶、硝化细菌:原核生物,能利用环境中氨(NH3)氧化生成亚硝酸(HNO2)或硝酸(HNO3)释放的化学能,

将二氧化碳和水合成为糖类。

⑷、能进行化能合成作用的生物也是自养生物

谁能讲讲有关光合作用的知识啊?

光合作用(Photosynthesis),即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

它分为两个过程,暗反应和光反应光反应

 光反应  条件:光照、光合色素、光反应酶。 场所:叶绿体的类囊体薄膜。(色素) 光合作用的反应: (原料) 光 (产物) 水+二氧化碳 →→→→→ 有机物(主要是淀粉) + 氧气 ( 光合叶绿体是条件) 叶绿体 过程:①水的光解:2H2O→4[H]+O2(在光和叶绿体中的色素的催化下)。②ATP的合成:ADP+Pi+能量→ATP(在光、酶和叶绿体中的色素的催化下)。 影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度、矿质元素等。 意义:①光解水,产生氧气。②将光能转变成化学能,产生ATP,为碳反应提供能量。③利用水光解的产物氢离子,合成NADPH(还原型辅酶Ⅱ),为碳反应提供还原剂NADPH(还原型辅酶Ⅱ),NADPH(还原型辅酶Ⅱ)同样可以为碳反应提供能量。 详细过程如下: 系统由多种色素组成,如叶绿素a(Chlorophyll a)、叶绿素b(Chlorophyll b)、类胡萝卜素(Carotenoids)等组成。既拓宽了光合作用的作用光谱,其他的色素也能吸收过度的强光而产生所谓的光保护作用(Photoprotection)。在此系统里,当光子打到系统里的色素分子时,会如图片所示一般,电子会在分子之间移转,直到反应中心为止。反应中心有两种,光系统一吸收光谱于700nm达到高峰,系统二则是680nm为高峰。反应中心是由叶绿素a及特定蛋白质所组成(这边的叶绿素a是因为位置而非结构特殊),蛋白质的种类决定了反应中心吸收之波长。反应中心吸收了特定波长的光线后,叶绿素a激发出了一个电子,而旁边的酵素使水裂解成氢离子和氧原子,多余的电子去补叶绿素a分子上的缺。然后叶绿素a透过如图所示的过程,生产ATP与NADPH(还原型辅酶)分子,过程称之为电子传递链(Electron Transport Chain)。

暗反应碳反应的实质是一系列的酶促反应。原称暗反应,后随着研究的深入,科学家发现这一概念并不准确。因为所谓的暗反应在暗中只能进行极短的时间,而在有光的条件下能连续不断进行,并受到光的调节。所以在20世纪90年代的一次光合作用会议上,从事植物生理学研究的科学家一致同意,将暗反应改称为碳反应。

条件:碳反应酶。 场所:叶绿体基质。 影响因素:温度、CO2浓度、酸碱度等。 过程:不同的植物,碳反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。碳反应可分为C3、C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO2固定成为C3的作用。C3再与NADPH在ATP供能的条件下反应,生成糖类(CH2O)并还原出C5。被还原出的C5继续参与碳反应。 光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。 CO2+H2O( 光照、酶、 叶绿体)==(CH2O)+O2 (CH2O)表示糖类(叶绿体相当于催化剂)

发表评论

评论列表

  • 丑味未芩(2022-06-12 03:55:52)回复取消回复

    ,只有提供H218O时,植物释放出18O2。15、卡尔文循环——卡尔文(M .Calvin,1911——)实验⑴、用14C标记CO2得14CO2⑵、向小球藻提供14CO2,追踪光和