源码反码补码什么是(源码补码?反码的关系)
本文目录一览:
原码,反码,补码,是什么?
带符号数,有三种表示方法,即:原码、反码和补码。
但是,在计算机系统中,数值一律用【补码】来表示和存储。
所以,在计算机系统中,原码和反码,都是不存在的。
使用补码的意义:可以把减法或负数,转换为加法运算。
因此,就能简化计算机的硬件。
=====================
补码的概念,来自于:补数。
比如钟表,时针转一圈,周期是 12 小时。
那么,倒拨 3 小时,可以用正拨 9 小时代替。
9,就是-3 的补数。 计算方法: 9 = 12-3。
同理,分针倒拨 X 分,可以用正拨(60-X) 代替。
60,是分针的周期。
同理,三角函数的周期是 2π。 那么,
在-π/2 处 的函数值,就与 2π-π/2 = +3π/2 处 相同。
------------
当你使用两位十进制数:0~99,周期就是 一百。
那么,减一,就可以用 +99 代替。
24-1 = 23
24 + 99 = (1) 23
舍弃进位,这两种算法,功能就是相同的。
于是,99 就是 -1 的补数。
其它负数的补数,可以按照下式来求:
补数 = 周期 + 负数
------------
计算机中使用二进制,补数,就改称为【补码】。
八位二进制是:0000 0000~1111 1111。
相当于十进制:0~255, 周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128 的补码,就是 1000 0000 = 128。
负数补码的计算公式:【 256 + 这个负数 】。
(式中的 256 = 2^8,是八位二进制的周期。)
正数,直接运算就可以,并不存在补码的问题。
所以,正数,并不用求补码。
(也有人乱说:正数本身就是补码。)
------------
求解算式: 7-3 = 4。
计算机中,并没有减法器,必须改用补码相加。
列竖式如下:
7 的补码=0000 0111
-3的补码=1111 1101
--相加-------------
得:(1) 0000 0100 = 4 的补码
舍弃进位,只保留八位,结果完全正确。
------------
借助于补码,可以简化计算机的硬件。
原码和反码,并没有这种功能。
所以,在计算机中,根本就没有它们。
它们都是什么? 就不用关心了。
什么是原码,反码,补码?
带符号数,有三种表示方法,即:原码、反码和补码。
但是,在计算机系统中,数值一律用【补码】来表示和存储。
所以,在计算机系统中,原码和反码,都是不存在的。
使用补码的意义:可以把减法或负数,转换为加法运算。
因此,就能简化计算机的硬件。
=====================
补码的概念,来自于:补数。
比如钟表,时针转一圈,周期是 12 小时。
那么,倒拨 3 小时,可以用正拨 9 小时代替。
9,就是-3 的补数。 计算方法: 9 = 12-3。
同理,分针倒拨 X 分,可以用正拨(60-X) 代替。
60,是分针的周期。
同理,三角函数的周期是 2π。 那么,
在-π/2 处,就与 +3π/2 处 的函数值相同。
算法: +3π/2 = 2π -π/2。
------------
如果你使用两位十进制数:0~99,周期就是一百。
那么,减一,就可以用 +99 代替。
24-1 = 23
24 + 99 = (1) 23
舍弃进位,这两种算法,功能就是相同的。
于是,99 就是 -1 的补数。
算法: 补数 = 周期(一百) + 负数
其它负数的补数,都可以按这公式求出来。
------------
计算机中使用二进制,补数,就改称为【补码】。
八位二进制是:0000 0000~1111 1111。
相当于十进制:0~255, 周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128 的补码,就是 1000 0000 = 128。
负数补码的计算公式:【 256 + 这个负数 】。
(式中的 256 = 2^8,是八位二进制的周期。)
正数,并不存在补码的问题。
所以,正数,并没有补码,可以直接运算。
(也有人乱说:正数本身就是补码。)
------------
计算: 7-3 = 4。
计算机中,并没有减法器,必须改用补码相加。
列竖式如下:
7 =0000 0111
-3的补码=1111 1101
--相加-------------
得:(1) 0000 0100 = 4
舍弃进位,只保留八位,结果就完全正确。
------------
借助于补码,可以简化计算机的硬件。
原码和反码,都没有这种功能。
所以,在计算机中,根本就没有原码和反码。
求一个数的补码,也用不到它们。
它们都是什么? 管它呢!
原码,反码,补码的定义是什么。
有符号数,有三种表示方法,即原码、反码和补码。
但是,在计算机系统中,数值一律用补码来表示和存储。
所以,在计算机系统中,原码和反码,都是不存在的。
----------
想要理解补码,要先从补数开始。
钟表的时针转一圈,周期是 12 小时。
倒拨 3 小时,就可以用正拨 9 小时代替。
9 就是-3 的补数。 9 = 12-3。
同理,分针倒拨 X 分,就可以用正拨(60-X)代替。
60 是分针的周期。
------
对于两位十进制 0~99,周期就是一百。
这时,减一,你就可以用 +99 代替。
25 - 1 = 24
25 + 99 = (1) 24
结果取两位,舍弃进位。这两种算法,功能就是相同的。
99,就称为-1 的补数。
98,就是-2 的补数。
。。。
负数的补数 = 周期 + 该负数。
利用补数,就可以用加法,代替减法运算。
正数,不需要求补数。
------
计算机使用二进制,补数,就改称:补码。
八位二进制,共有 256 个数字。负数的补码 = 256+该负数。
16 位二进制,共有 2^16 个数字。负数的补码 = 65536+ 该负数。
这就是补码的定义式。在你的书上,一定能找到这种算式。
------
在八位时:
-1 的补码是:256-1 = 255 = 1111 1111(二进制)。
-2 的补码是:254 = 1111 1110。
-3 的补码是:253 = 1111 1101。
。。。
-128 补码:128 = 1000 0000。
------
有了补码,计算机仅需要一个加法器,就可以加减通用了。
而原码和反码,不具备这种能力。
所以,原码和反码,究竟是怎么定义,就不必关心了。
因为,它们,毫无用处。
什么是原码、反码、补码?
在计算机系统中,数值,一律用补码表示和存储。
计算机中,并没有原码和反码。
为什么用补码?
就是为了:简化硬件,节约成本。
因为,负数,是可以用一个正数(补码)代替的。
如: 24 - 1 = 23
24 + 99 = (一百) 23
忽略进位,用 +99 就可以代替-1。
+99,就是-1 的补数。 计算机用二进制,就称为:补码。
用补码(正数)代替了负数,那么,计算机中,就没有负数了。
那么,在计算机中,就只有加法运算了。
所以,在计算机中,只需设置一个加法器,便可加减通吃了。
-------------
定点整数的补码(mod=2^n)定义式如下:
[X]补 = X( 0 ≤ X 2^(n-1) )
[X]补 = 2^n - | X |(-2^(n-1) ≤ X 0 )
当 n = 8 时,[-128]补 = 256-128 = 1000 0000B。
-------------
定点小数的补码(mod=2)定义式如下:
[X]补 = X ( 0 ≤ X 1 )
[X]补 = 2 + X (-1 ≤ X 0 )
因此,-1.0 的补码为 2 +(-1) = 1.0000。
-------------