b2c信息网

您现在的位置是:首页 > 头条资讯 > 正文

头条资讯

化工污水处理设计规范(污水处理设施设计规范)

hacker2022-07-02 18:21:22头条资讯98
本文目录一览:1、化工废水处理工艺问题:数据在下面,应该采用什么工艺啊,做毕业设计,真是不知道从哪下手,求指点,谢谢

本文目录一览:

化工废水处理工艺问题:数据在下面,应该采用什么工艺啊,做毕业设计,真是不知道从哪下手,求指点,谢谢

如果是化工废水,那必然BOD很低,不能用简单的生物法来做,肯定要用物理化学的方法来处理,这一点数据就远远不够了,得分析是什么产生的废水。一般的思路无非是絮凝--沉淀--萃取等,基本涉及不到生物法。

污水处理排污应急池有什么要求?

设计要求

1、事故池容积确定应执行的标准或规范主要有:GB50483-2009、Q/SY 1190-2009和中国石化安环[2006]10号等。GB50483规定的应急事故水池容积确定方法,对所有涉及危险化学品环境风险事故排水的项目均应适用执行。

其中消防用水量确定、围堰或防火堤有效容积确定时应按《建筑设计防火规范》(GB50016-2014)、《石油化工企业设计防火规范》(GB50160-2008)、《石油库设计规范》(GB50074-2014)、《储罐区防火堤设计规范》(GB50351-2014)等有关规定执行。

最大降雨量确定按《室外排水设计规范》(GB50014-2006)、《石油化工企业给水排水系统设计规范》(SH3015-2003)等执行。必须根据项目特点、行业标准或规范、事故池容积确定的具体要求等,注意区分各标准规范的适用范围和具体规定条款的执行,尤其是石油化工企业和石油库。

2、应急事故水池容量应根据发生事故的设备容量、事故时消防用水量及可能进入应急事故水池的降水量等因素综合确定。罐区防火堤内容积、排至事故池的排水管道在自流进水的事故池最高液位以下的容积、现有储存事故排水设施的容积均可作为事故排水储存有效容积。

计算应急事故废水量时,装置区或贮罐区事故不作同时发生考虑,取其中的最大值。应按事故排水最大流量对事故排水收集系统的排水能力进行校核,明确导排系统的防火、防爆、防渗、防腐、防冻、防洪、抗浮、抗震等措施。

3、必须注意事故时进入事故水池的雨水量,与正常生产时初期雨水量(即前期雨水)的本质区别,不可混淆。

一是降雨历时不同,正常生产运营过程中初期雨水是指刚下的雨水,一次降雨过程中的前10~20min最大降水量,其设计参数计算必须按GB50014规定的短历时暴雨强度公式确定;而事故时降水量应根据事故消防时间(参照GB50016、GB50160规定一般为2~6h,Q/SY 1190规定为6~10h)确定。

二是汇水面积不同,初期雨水的汇水面积必须考虑生产区和储存区总的汇水面积;事故时只考虑装置区或罐区单独的能进入事故排水系统的最大降雨量,不作同时汇水考虑,且应采取措施尽量减少进入事故排水收集系统的雨水汇集面积。

4、在非事故状态下需占用事故池时(例如,前期雨水池共用),占用容积不得超过事故池容积的1/3,并应设有在事故时可以紧急排空的技术措施。污水处理事故池不可作为事故储存设施,不能把风险进一步转加到污水处理系统。

扩展资料

处理方法

按作用分

污水处理按照其作用可分为物理法、生物法和化学法三种。

①物理法:主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。常用的有重力分离、离心分离、反渗透、气浮等。物理法处理构筑物较简单、经济,用于村镇水体容量大、自净能力强、污水处理程度要求不高的情况。

②生物法:利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,使污水得到净化。常用的有活性污泥法和生物膜法。生物法处理程度比物理法要高。

③化学法:是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。常用的有混凝法、中和法、氧化还原法、离子交换法等。化学处理法处理效果好、费用高,多用作生化处理后的出水,作进一步的处理,提高出水水质。

按处理程度分

污水处理按照处理程度来分可分为一级处理、二级处理和三级处理。

一级处理主要是去除污水中呈悬浮状态的固体物质,常用物理法。一级处理后的废水BOD去除率只有20%,仍不宜排放,还须进行二级处理。二级处理的主要任务是大幅度去除污水中呈胶体和溶解状态的有机物,BOD去除率为80%~90%。

一般经过二级处理的污水就可以达到排放标准,常用活性污泥法和生物膜处理法。三级处理的目的是进一步去除某种特殊的污染物质,如除氟、除磷等,属于深度处理,常用化学法。

参考资料来源:百度百科-事故水池

参考资料来源:百度百科-污水处理

印染废水的处理方案如何设计?

福建省某某印染有限公司印染废水处理方案设计

1 工程概况

PU革是近几年迅速发展的一种产品,它种类繁多,物美价廉,广泛应用于汽车、鞋革、箱包、沙发、装饰及服装生产工业,是皮革的优良代用品,而革基布则是PU革的基础材料,市场需求量极大,某县县现有织布厂20多家,织布机1500多台,年产革基布9000万米,以往某县县各织布厂生产的革基坯布未经漂染加工直接销往外地,产品附加值较低。福建省某某印染有限公司在某县县埔头工业区建设年产PU革基布3000万米这一项目,可成为某县县当地的漂染基地,既可增加某县县税费收入,又可解决部分剩余劳动力。

纺织印染行业是工业废水排放大户,据估算,全国每天排放的废水量约(3-4)×106m3,且废水中有机物浓度高,成分复杂,色度深,pH变化大,水质水量变化大,属较难处理工业废水。据福建省某某印染有限公司提供的数据,该项目的建成排放废水量800吨/日。

根据《建设项目管理条例》和《环境保护法》之规定,环保设施的建设应与主体工程“三同时”。受福建省某某印染有限公司委托,我们提出了该项目的废水处理方案,按本方案进行建设后,可确保废水的达标排放,能极大地减轻该项目外排废水对某县的不利影响。

2 方案设计依据

2.1 福建省某某印染有限公司提供的水质参数

2.2 《纺织染整工业水污染物排放标准》GB4287-92

2.3 《室外排水设计规范》GBJ14-87

2.4 《建筑给排水设计规范》GBJ15-87

2.5 《福建省环境保护条例》

2.6 其它同类企业废水处理设施竣工验收监测数据

3 方案设计原则

3.1 可行性原则。在工程设计中,在确保工艺可行的同时,兼顾经济上许可的能力(总投资费用省、运行费用低等),考虑工艺上的可行性与经济上的可行性协调统一。

3.2 可靠性原则。通过对印染行业目前废水处理情况的调研,结合多年从事废水处理的经验,同时借鉴目前印染废水处理的成功个例,并与当前先进的废水处理设备相融合,制定合理、成熟、可靠的废水处理工艺,确保废水处理系统能长期、稳定、可靠地运行。

3.3 先进性原则,采用当前废水处理的先进工艺和设备。

3.4 操作管理方便,技术简单实用,提高操作管理水平,实现科学现代化的管理。

3.5 避免二次污染,在治理废水的同时,避免污泥和噪音产生二次污染。

4 废水的水质水量

福建省某某印染有限公司采用的原料为纯棉或涤棉坯布,染料有直接和分散染料,助剂有烧碱、碳酸钠、双氧水、表面活性剂、工业食盐、起毛剂等。

废水为连续排放,但水量、水质变化大,无固定规律,根据福建省某某印染有限公司提供并结合同类型企业的资料,其废水水质参数如下:

废水量 800吨/天

CODcr 1767mg/l

BOD5 868mg/l

SS 121mg/l

pH 9~12

NH3-N 15.1mg/l

S2- 2.3mg/l

色度 1000倍

5 废水处理后排放标准

根据《纺织染整工业水污染物排放标准》GB4287-92中之规定:

CODcr 100mg/l

BOD5 25mg/l

色度 40倍(稀释倍数)

pH 6~9

SS 70mg/l

氨氮 15mg/l

硫化物 1.0mg/l

六价铬 0.5mg/l

铜 0.5mg/l

苯胺类 1.0mg/l

二氧化氯 0.5mg/l

最高允许排水量 2.5m3/百米布(幅宽 914mm)

6 废水处理工艺

6.1 纺织染整行业废水的特点

纺织染整行业的废水主要来自退浆、煮炼、漂白、染色和整理工段,各工段废水特点如下:

6.1.1 退浆废水

退浆是利用化学药剂去除纺织物上的杂质和浆料,便于下道工序的加工,此部分废水所含杂质纤维较多。以往由于纺织厂用淀粉为原料,故废水中BOD5浓度很高,是整个印染废水中BOD5的主要来源,使废水中B/C比较高,往往大于0.3,适宜生化,但随着科技的进步,印染厂所用浆料逐步被CAM/PVA所代替,从而使废水中BOD5下降,CODcr升高,废水的可生化性降低。

6.1.2 煮炼

煮炼工序是为了去除织物所含蜡质、果胶、油剂和机油等杂质,使用的化学药剂以烧碱和表面活性剂为主,此部分废水量大,碱性强,CODcr、BOD5高,是印染废水中主要的有机污染源。

6.1.3 漂白废水

漂白主要是利用氧原子氧化织物中的着色基团,达到织物增白的目的,漂白废水中一般有机物含量较低,使用的漂白剂多为双氧水。

6.1.4 染色废水

染色工艺是本项目的支柱工艺,在此过程中,使用直接、分散等染料和各种助剂,从而使染色工艺成为复杂工艺,也使染色废水水质呈现出复杂多样性。一般而言,染色废水碱性强,色泽深,对人体器官刺激大,BOD5、CODcr浓度高,废水中所含各种染料、表面活性剂和各种助剂是印染废水中最大的有机物污染源。

6.2 目前印染废水处理现状

印染废水的处理以生化法为主,并常与物理、化学法串联,方能取得较好的效果,目前对印染废水处理常见的处理方法有:

6.2.1 完全混合式活性污染法

此法工艺较成熟,在印染废水治理中有一定的历史,目前应用于纺织系统中大多数工厂。某市印染厂废水治理即采用此法。此法主要设施有调节池、曝气池和沉淀池等。

调节池主要用以调节各污染源排放废水的水质水量,防止对曝气池形成冲击,避免细菌死亡。因此,废水在调节池停留时间越长越好,但也要考虑建造费用,故一般根据企业的生产周期和占地条件来设计调节池。

曝气池主要作用是对泥水混合液充氧,保证活性污泥在分解有机物时所需的氧量,同时使活性污泥和废水充分混合。一般对曝气池的技术要求是污泥负荷常为0.3-0.4kgBOD5/kg.MLSS.d曝气时间约为4-6小时,污泥浓度一般在3-4g/l,但随着化纤织物的比例不断增大和水处理技术的提高,这些技术要求有所改变。

沉淀池主要是使泥水分离,并在沉淀时进一步降解有机物,经过泥水分离后水直接排放,污泥一部分回流进入曝气池,一部分作剩余污泥排放。

活性污泥法的特点是污水与生物污泥的接触较均匀持久,池水浓度分布较均匀,水温控制幅度较宽,在布水操作上也比较简单,处理效率较高,一般BOD5去除率可达95%以上,CODcr去除率在60%左右。但该法管理较复杂,易发生污泥膨胀及上翻,且占地面积较大。

6.2.2 接触氧化法

接触氧化法是近年来逐步广泛应用的污水处理技术。上海纺织系统中针织和印染厂大多采用的是塔式滤池(接触氧化法的一种)。塔式滤池的结构是塔加填料,塔的作用是充氧和安放填料,塔的高度是根据充氧要求和污水与填料上生物膜接触时间来设计,一般需要2.5-4小时,容积负荷在2-3kgBOD5/m3,填料过去使用表面粗糙的固体物使生物膜能依附其上,随着塑料工业的发展,目前采用了蜂窝填料和软性填料作生物膜支撑物,取得较好效果。

塔式滤池特点是运行管理方便,处理时间短,占地面积小,但有机物去除率相对低此,一般CODcr去除率在45-60%,BOD5去除率在70-90%,色度去除率在30-50%。

6.2.3 物理化学法

随着织物中化纤成份增多和化学助剂浆料的使用,印染废水中BOD5与CODcr比值发生了变化,废水的可生化性变差,为达到较好的处理效果,纺织行业开始采用物理化学法(臭氧混凝沉淀和气浮法等)处理印染废水。物理化学法常用混凝剂有硫酸铝、硫酸亚铁、三氯化铁、碱式氯化铝、高分子混凝剂等。一般物理化学法用于二级处理,也有些工厂如上海第二丝绸印染厂单用物理化学法处理印染废水。实践证明,混凝气浮是一种较为合适的物化处理方法,因为印染废水中含有大量的污染物质如纤维素、浆料等,呈悬浮状态和胶体状态,且有些染料如分散、硫化、还原染料及涂料与混凝剂特别是铝盐混凝剂产生的絮凝物比重较小,适合采用气浮法处理。

其它化学方法,如臭氧作为氧化剂脱色效果很好,但是耗电量大,处理成本高,不易推广。同样,电解法也存在耗电量大,钢材用量大,且运转管理较复杂的问题。

6. 2.4 A/O法

(1)有A1/O法,即缺氧/好氧生物脱氮工艺,是英文Anoxic/Oxic的缩写,它的主要功能是去除有机物和脱氮,一般对BOD5和SS的总去除率为90-95%,总氮的去除率为70%以上。

(2)有A2/O法,即厌氧——好氧除磷工艺,是英文Anaerobic-Oxic的缩写,其主要功能是去除有机物和除磷,一般对BOD5和SS和去除率为95%,磷的去除率为70%以上。

(3)A2/O法,即厌氧——缺氧——好氧生物脱氮除磷工艺,是英文Anaerobic-Anoxic-Oxic的缩写,其功能是去除有机物和除磷脱氮。

6.2.4 其他方法

有A/B法、水解——好氧生物处理工艺等,是较新的处理工艺,也有应用于印染废水处理,本文不再一一赘述。

6.3 本方案采用的印染废水的处理工艺

6.3.1 工艺流程:

经综合比较分析,并结合多年从事印染废水处理的经验,以经济和可行为原则,决定采用如下处理工艺:

.3.2 工艺流程简述

浓碱性废水先经过格栅处理后用于水膜除尘器除尘,经消烟除尘后,可降低PH值,使系统不必加酸调整PH,并可去除约30%的CODcr,使生化系统负荷降低,以节省运行费用,保证了生化处理的PH条件。除尘水沉淀后与其它生产废水一并经粗细格栅去除较粗杂质后,进入调节池,在调节池内设置预曝气系统,可均匀水质并防止杂质沉淀,还可以调蓄水量和在一定程度上脱除废水中硫化物。调节池的水用泵提升至反应池,经加药反应后靠重力流入竖流式沉淀池进行泥水分离。底部的污泥排至污泥浓缩池,竖流式沉淀池可去除部分有机物和大幅度降低硫化物和CODcr、色度,降低PH值并提高了B/C比值,为后续生化处理创造条件。

竖流式沉淀池上清液靠重力流入水解酸化池,同时调入营养料(P),降解大分子物质,进一步提高B/C,并降低CODcr。水解酸化池出水再靠重力流至A/O接触氧化池。在A/O接触氧化池中去除大部分溶解性有机物并进行反硝化脱氮,O池末端混合液回流至A池起始端,其中A池占1/3,O池占2/3,回流量为2倍处理水量。

A/O接触氧化池出水靠重力流至气浮系统,经加药气浮后,浮泥至污泥浓缩池,出水至排放池,当需要时在排放池内投加脱色剂,达标废水就近排放。

剩余活性污泥排入污泥脱水池,污泥脱水池上清液入调节池循环处理。脱水后的干污泥妥善处理(可掺入煤中送锅炉焚烧),防止二次污染。

6.3.3 主要处理单元说明

(1)水解酸化

在缺氧条件下,废水中的有机物完成厌氧反应的第一阶段,将一些难生物降解的有机物分解成易生物降解的小分子有机物,降低CODcr、BOD5、SS、S2-、色度,提高废水可生化性,为后续生化处理创造良好条件。

(2)絮凝剂

废水呈碱性,含硫化物。常用的絮凝剂为PAC或PFS,助凝剂为PAM,但PAC投加量过多可能影响后续生化处理,因此本工艺选择FM复合絮凝剂。FM对染色废水的色度和CODcr的去除有显著效果,而且具有脱硫的性能。该研究为上海市科委的攻关项目,已由上海市科委组织鉴定,并实际应用。FM絮凝剂价格低、来源方便,可现场复配。当然也可使用其它合适的絮凝剂,助凝剂为PAM。

(3)生化处理

生物接触氧化是一种较新的生物膜法,是在池中安装填料,填料具有很大的比表面积,是一种生物载体,产生较大的活性污泥浓度,以提高接触氧化池的容积负荷,提高污染物的去除效率。同时具有设备简单,占地小,维护方便,操作灵活,运行费用低等特点。已广泛应用于化工、食品、制药、印染等行业的废水处理,效果显著。被国家环保局推荐为最佳环保实用技术。

6.3.4废水处理工艺特点

(1)浓碱废水经消烟除尘后,可降低PH值,使系统不必加酸调整PH,并可去除约30%的CODcr,使生化系统负荷降低,以节省经常费用,保证了生化处理的PH条件。

(2)加药反应沉淀,主要目的是去除部分有机物和大幅度降低硫化物、降低色度和SS,提高了B/C比值,并适当降低了PH值(PH10),为生化创造条件。

(3)水解酸化池采用填料形式,定时曝气冲刷生物膜防止沉淀。每四小时开10分钟,可使池内基本保持无氧状态,又可达到换膜目的。

(4)A/O系统采用接触氧化方式,可减少构筑物,节省投资,耐冲击,污泥量少,主要去除大部溶解性有机物和反硝化脱氮。

(5)最终加药反应气浮系统,可进一步去除不可降解有机物、色度等使处理水达标排放。

(6)排放池的设置主要为便于监测,在需要时还可投加脱色剂。

7 主要构筑物、设备等投资概算(最终以扩初设计为准)

7.1 主要构筑物设计参数

序号 名 称 参数 材料 数量 备 注

1 集水井 10m3 砖混 1座

2 调节预曝池 450m3 砖混 1座 可依现场情况适当增减

3 沉淀池 80 m3 钢砼 1座 可依现场情况适当增减

4 水解酸化池 450m3 钢砼 1座

5 接触氧化池 700m3 钢砼 1座

6 混凝气浮(含反应池) 40m3 砖混 1座

7 机泵间 40m2 砖混 1座

8 污泥干化池 30m2 砖混 3座 可依现场情况适当增减

9 污泥浓缩池 60 m3 砖混 1座

10 排放池 35 m3 砖混 1座

7.2 主要设备及投资

序号 名 称 规格、型号 数 量 价格(万元)

1 粗细格栅 非标 2台 0.2

2 污水泵 Q=40,H=10 1台 0.4

3 曝气机 Q=10,H=5 3台 13.6

4 搅拌机 1台 1.8

5 填料 TB/TA2—TH1 800 m3 15

6 微孔曝气 TK/R65 500 5.3

7 污水泵 Q=70,H=10 1台 0.3

8 加药设备 非标(防腐) 0.8

9 部分加压溶气气浮机 非标 6.8

10 自动控制柜 非标 1台 0.85

11 曝气系统 非标 3.2

12 预曝气系统 非标 1.6

13 电缆线照明仪表 0.6

14 填料支架 1.3

15 管道阀门 2.7

16 安装费(厂方安装) 0

17 运输费 0.8

18 小 计 55.25

7.3 其他费用

序号 名 称 金 额

1 设计费 3.0

2 调试费(不含药剂费用) 1.6

3 小 计 4.6

总计投资费用(不含土建及气浮雨棚59.86万元(总排水计量流量计未计在内),土建费用约为75万元,详细费用应在初设完成后最终确定。

8 废水处理费用

8.1 操作管理人员工资:

废水处理站24小时连续三班三运转,操作人员每班1人,共计3人。按每月工资平均500元计3×12×500元/1658/365=0.03元/吨-水

8.2 药剂费:混凝剂FM和助凝剂PAM组合使用,0.26元/吨-水。

8.3 电费:0.33元/吨-水。

8.4 处理每吨水总运行费用:

0.03+0.26+0.33=0.62元

经常运行费:0.62元/吨-水。

9.补充说明 因时间仓促,且未能进行现场调查,最终方案可能还需要进行适当调整。

工业循环冷却水处理设计规范标准是什么

工业循环冷却水处理设计规范 GB50050—95

  主编部门:中华人民共和国化学工业部

批准部门:中华人民共和国建设部

施行日期:1995年10月1日

关于发布国家标准《工业循环冷却水处理设计规范》的通知

建标[1995]132号

根据国家计委计综[1992]490号文的要求,由化工部会同有关部门共同修订的《工业循环冷却水处理设计规范》已经有关部门会审,现批准《工业循环冷却水处理设计规范》GB50050—95为强制性国家标准,自一九九五年十月一日起施行,原《工业循环冷却水处理设计规范》GBJ50—83同时废止。

本标准由化工部负责管理,具体解释等工作由中国寰球化学工程公司负责,出版发行由建设部标准定额研究所负责组织。

中华人民共和国建设部

一九九五年三月十六日

1 总则

1.0.1 为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。

1.0.2 本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。

1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。

1.0.4 工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。

1.0.5 工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。

2 术语、符号

2.1 术语

2.1.1 循环冷却水系统Recinrculating cooling water system

以水作为冷却介质,由换热设备、冷却设备、水泵、管道及其它有关设备组成,并循环使用的一种给水系统。

2.1.2 敞开式系统Open system

指循环冷却水与大气直接接触冷却的循环冷却水系统。

2.1.3 密闭式系统Closed system

指循环冷却水不与大气直接接触冷却的循环冷却水系统。

2.1.4 药剂Chemicals

循环冷却水处理过程中所使用的各种化学物质。

2.1.5 异养菌数Count of heterotrophic bacteria

按细菌平皿计数法求出每毫升水中的异养菌个数。

2.1.6 粘泥Slime

指微生物及其分泌的粘液与其它有机和无机的杂质混合在一起的粘浊物质。

2.1.7 粘泥量Slime content

用标准的浮游生物网,在一定时间内过滤定量的水,将截留下来的悬浊物放入量筒内静置一定时间,测其沉淀后粘泥量的容积,以mL/ 表示。

2.1.8 污垢热阻值Fouling resistance

表示换热设备传热面上因沉积物而导致传热效率下降程度的数值,单位为㎡•K/W。

2.1.9 腐蚀率Corrosionrate

以金属腐蚀失重而算得的平均腐蚀率,单位为mm/a。

2.1.10 系统容积System capacity volume

循环冷却水系统内所有水容积的总和。

2.1.11 浓缩倍数Cycle of concentration

循环冷却水的含盐浓度与补充水的含盐浓度之比值。

2.1.12 监测试片Monitoring test coupon

放置在监测换热设备或测试管道上监测腐蚀用的标准金属试片。

2.1.13 预膜Prefilming

在循环冷却水中投加预膜剂,使清洗后的换热设备金属表面形成均匀密致的保护膜的过程。

2.1.14 间接换热Indirest heat exchange

换热介质之间不直接接触的一种换热形式。

2.1.15 旁流水Side stream

从循环冷却水系统中分流出部分水量,按要求进行处理后,再返回系统。

2.1.16 药剂允许停留时间Permittde retention time of chemi-cals

药剂在循环冷却水系统中的有效时间。

2.1.17 补充水量Amount of makeup water

循环冷却水系统在运行过程中补充所损失的水量。

2.1.18 排污水量Amount of blowdown

在确定的浓缩倍数条件下,需要从循环冷却水系统中排放的水量。

2.1.19 热流密度Heat load intensity

换热设备的单位传热面每小时传出的热量,以w/㎡表示。

 2.2 符号

编号 符号 含义

2.2.1 A 冷却塔空气流量( /h)

2.2.2 Ca 空气中的含尘量(g/ )

2.2.3 Cmi 补充水中某项成份的含量(mg/L)

2.2.4 Cms 补充水的悬浮物含量(mg/L)

2.2.5 Cri 循环冷却水中某项成份的含量(mg/L)

2.2.6 CTS 循环冷却水的悬浮物含量(mg/L)

2.2.7 Gsi 旁流处理后水中某项成份的含量(mg/L)

2.2.8 Css 旁流过滤后水的悬浮物含量(mg/L)

2.2.9 Gc 加氯量(kg/h)

2.2.10 Gf 系统首次加药量(kg)

2.2.11 Gn 非氧化性杀菌灭藻剂的加药量(kg)

2.2.12 Gr 系统运行时的加药量(kg/h)

2.2.13 g 单位循环冷却水的加药量(mg/L)

2.2.14 gc 单位循环冷却水的加氯量(mg/L)

2.2.15 Ks 悬浮物沉降系数

2.2.16 N 浓缩倍数

2.2.17 Q 循环冷却水量( /h)

2.2.18 Qb 排污水量( /h)

2.2.19 Qe 蒸发水量( /h)

2.2.20 Qm 补充水量( /h)

2.2.21 Qsi 旁流处理水量( /h)

2.2.22 Qsf 旁流过滤水量( /h)

2.2.23 Qw 风吹损失水量( /h)

2.2.24 Td 设计停留时间(h)

2.2.25 V 系统容积( )

2.2.26 Vf 设备中的水容积( )

2.2.27 Vp 管道容积( )

2.2.28 Vpc 管道和膨胀罐的容积( )

2.2.29 Vt 水池容积( )

3 循环冷却水处理

3.1 一般规定

3.1.1 循环冷却水处理设计方案的选择,应根据换热设备设计对污垢热阻值和腐蚀率的要求,结合下列因素通过技术经济比较确定:

3.1.1.1 循环冷却水的水质标准;

3.1.1.2 水源可供的水量及其水质;

3.1.1.3 设计的浓缩倍数(对敞开式系统);

3.1.1.4 循环冷却水处理方法所要求的控制条件;

3.1.1.5 旁流水和补充水的处理方式;

3.1.1.6 药剂对环境的影响。

3.1.2 循环冷却水用水量应根据生产工艺的最大小时用水量确定,供水温度应根据生产工艺要求并结合气象条件确定。

3.1.3 补充水水质资料的收集与选取应符合下列规定:

3.1.3.1 当补充水水源为地表水时,不宜少于一年的逐月水质全分析资料;

3.1.3.2 当补充水水源为地下水时,不宜少于一年的逐季水质全分析资料;

3.1.3.3 循环冷却水处理设计应以补充水水质分析资料的年平均值作为设计依据,以最差水质校核设备能力。

3.1.4 水质分析项目宜符合本规范附录A的要求。

3.1.5 敞开式系统中换热设备的循环冷却水侧流速和热流密度,应符合下列规定:

3.1.5.1 管程循环冷却水流速不宜小于0.9m/s;

3.1.5.2 壳程循环冷却水流速不应小于0.3m/s。当受条件限制不能满足上述要求时,应采取防腐涂层、反向冲洗等措施;

3.1.5.3 热流密度不宜大于58.2kW/㎡。

3.1.6 换热设备的循环冷却水侧管壁的污垢热阻值和腐蚀率应按生产工艺要求确定,当工艺无要求时,宜符合下列规定:

3.1.6.1 敞开式系统的污垢热阻值宜为1.72× ~3.44× •㎡K/W;

3.1.6.2 密闭式系统的污垢热阻度宜小于0.86× ㎡•K/W。

3.1.6.3 碳钢管壁的腐蚀率宜小于0.125mm/a,铜、铜合金和不锈钢管壁的腐蚀率宜小于0.005mm/a。

3.1.7 敞开式系统循环冷却水的水质标准应根据换热设备的结构形式、材质、工况条件、污垢热阻值、腐蚀率以及所采用的水处理配方等因素综合确定,并宜符合表3.1.7的规定。

循环冷却水的水质标准表3.1.7

注:①甲基橙碱度以CaCo3计;

②硅酸以SiO2计;

③ +以CaCo3计。

3.1.8 密闭式系统循环冷却水的水质标准应根据生产工艺条件确定。

3.1.9 敞开式系统循环冷却水的设计浓缩倍数不宜小于3.0。浓缩倍数可按下式计算:

   

式中N——浓缩倍数;

Qm——补充水量( /h);

Qb——排污水量( /h);

Qw——风吹损失水量( /h)。

3.1.10 敞开式系统循环冷却水中的异养菌数宜小于5× 个/mL;粘泥量宜小于4mL/ 。

 3.2 敞开式系统设计

3.2.1 循环冷却水在系统内的设计停留时间不应超过药剂的允许停留时间。设计停留时间可按下式计算:

式中Td——设计停留时间(h);

V——系统容积( )。

3.2.2 循环冷却水的系统容积宜小于小时循环水量的1/3。当按下式计算的系统容积超过前述规定时,应调整水池容积。

式中Vf——设备中的水容积( );

Vp——管道容积( );

Vt——水池容积( )。

3.2.3 经过投加阻垢剂、缓蚀剂和杀菌灭藻剂处理后的循环冷却水不应作直流水使用。

3.2.4 系统管道设计应符合下列规定:

3.2.4.1 循环冷却水回水管应设置直接接至冷却塔集水池的旁路管;

3.2.4.2 换热设备的接管宜预留接临时旁路管的接口;

3.2.4.3 循环冷却水系统的补充水管管径、集水池排空管管径应根据清洗、预膜置换时间的要求确定。置换时间应根据供水能力确定,宜小于8h。当补充水管设有计量仪表时,应增设旁路管。

3.2.5 冷却塔集水池宜设置便于排除或清除淤泥的设施。集水池出口处和循环水泵吸水井宜设置便于清洗的栏污滤网。

3.3 密闭式系统设计

3.3.1 密闭式循环冷却水系统容积可按下式计算:

式中Vpc——管道和膨胀罐的容积( )。

3.3.2 密闭式循环冷却水系统的加药设施,应具备向补充水和循环水投药的功能。

3.3.3 密闭式循环冷却水系统的供水总管和换热设备的供水管,应设置管道过滤器。

3.3.4 密闭式循环冷却水系统的管道低点处应设置泄空阀,管道高点处应设置自动排气阀。

 3.4 阻垢和缓蚀

3.4.1 循环冷却水的阻垢、缓蚀处理方案应经动态模拟试验确定,亦可根据水质和工况条件相类似的工厂运行经验确定。当做动态模拟试验时,应结合下列因素进行:

3.4.1.1 补充水水质;

3.4.1.2. 污垢热阻值;

3.4.1.3 腐蚀率;

3.4.1.4 浓缩倍数;

3.4.1.5 换热设备的材质;

3.4.1.6 换热设备的热流密度;

3.4.1.7 换热设备内水的流速;

3.4.1.8 循环冷却水温度;

3.4.1.9 药剂的允许停留时间;

3.4.1.10 药剂对环境的影响;

3.4.1.11 药剂的热稳定性与化学稳定性。

3.4.2 当敞开式系统换热设备的材质为碳钢,循环冷却水采用磷系复合配方处理时,循环冷却水的主要水质标准除应符合本规范3.1.7条的规定外,尚应符合下列规定:

3.4.2.1 悬浮物宜小于10mg/L;

3.4.2.2 甲基橙碱度宜大于50mg/L(以CaCo3计);

3.4.2.3 正磷酸盐含量(以 计)宜小于或等于磷酸盐总含量(以 计)的50%。

3.4.2 当采用聚磷酸盐及其复合药剂配方时,换热设备出口处的循环冷却水温度宜低于50℃。

3.4.4 当敞开式系统循环冷却水处理采用含锌盐的复合药剂配方时,锌盐含量宜小于4.0mg/L(以 计),pH值宜小于8.3。当pH值大于8.3时,水中溶解锌与总锌重量比不应小于80%。

3.4.5 当敞开式系统循环冷却水处理采用全有机药剂配方时,循环冷却水的主要水质标准除应符合本规范3.1.7条的规定外,尚应符合下列规定:

3.4.5.1 pH值应大于8.0;

3.4.5.2 钙硬度应大于60mg/L;

3.4.5.3 甲基橙碱度应大于100mg/L(以CaCO3计)。

3.4.6 当循环冷却水系统中有铜或铜合金换热设备时,循环冷却水处理应投加铜缓蚀剂或采用硫酸亚铁进行铜管成膜。

3.4.7 循环冷却水系统阻垢、缓蚀剂的首次加药量,可按下列公式计算:

式中Gf——系统首次加药量(kg);

g——单位循环冷却水的加药量(mg/L)。

3.4.8 敞开式循环冷却水系统运行时,阻垢、缓蚀剂的加药量,可按下列公式计算:

式中Gr——系统运行时的加药量(kg/h);

Qe——蒸发水量( /h)。

3.4.9 密闭式循环冷却水系统运行时,缓蚀剂加药量可按下列公式计算:

 3.5 菌藻处理

3.5.1 敞开式循环冷却水的菌藻处理应根据水质、菌藻种类、阻垢剂和缓蚀剂的特性以及环境污染等因素综合比较确定。

3.5.2 敞开式循环冷却水的菌藻处理宜采用加氯为主,并辅助投加非氧化性杀菌灭藻剂。

3.5.3 敞开式循环冷却水的加氯处理宜采用定期投加,每天宜投加1~3次,余氯量宜控制在0.5~1.0mg/L之内。每次加氯时间根据实验确定,宜采用3~4h。加氯量可按下式计算:

式中Gc——加氯量(kg/h);

Q——循环冷却水量( /h);

gc——单位循环冷却水的加氯量,宜采用2~4mg/L。

3.5.4 液氯的投加点宜设在冷却塔集水池水面以下2/3水深处,并应采取氧气分布措施。

3.5.5 非氧化性杀菌灭藻剂的选择应符合下列规定:

3.5.5.1 高效、广谱、低毒;

3.5.5.2 pH值的适用范围较宽;

3.5.5.3 具有较好的剥离生物粘泥作用;

3.5.5.4 与阻垢剂、缓蚀剂不相互干扰;

3.5.5.5 易于降解并便于处理。

3.5.6 非氧化性杀菌灭藻剂,每月宜投加1~2次。每次加药量可按下式计算:

式中Gn——加药量(kg)。

3.5.7 非氧化性杀菌灭藻剂宜投加在冷却塔集水池的出水口处。

3.6 清洗和预膜处理

3.6.1 循环冷却水系统开车前,应进行清洗、预膜处理、但密闭式系统的预膜处理应根据需要确定。

3.6.2 循环冷却水系统的水清洗,应符合下列规定:

3.6.2.1 冷却塔集水池、水泵吸水池、管径大于或等于800mm的新管,应进行人工清扫;

3.6.2.2 管道内的清洗水流速不应低于1.5m/s;

3.6.2.3 清洗水应从换热设备的旁路管通过;

3.6.2.4 清洗时应加氯杀菌,水中余氯宜控制在0.8~1.0mg/L之内。

3.6.3 换热设备的化学清洗方式应符合下列规定:

3.6.3.1 当换热设备金属表面有防护油或油污时,宜采用全系统化学清洗。可采用专用的清洗剂或阴离子表面活性剂;

3.6.3.2 当换热设备金属表面有浮锈时,宜采用全系统化学清洗。可采用专用的清洗剂;

3.6.3.3 当换热设备金属表面锈蚀严重或结垢严重时,宜采用单台酸洗。当采用全系统酸洗时,应对钢筋混凝土材质采取耐酸防腐措施。换热设备酸洗后应进行中和、钝化处理;

3.6.3.4 当换热设备金属表面附着生物粘泥时,可投加具有剥离作用的非氧化性杀菌灭藻剂进行全系统清洗。

3.6.4 循环冷却水系统的预膜处理应在系统清洗后立即进行,预膜处理的配方和操作条件应根据换热设备材质、水质、温度等因素由试验或相似条件的运行经验确定。

3.6.5 当一个循环冷却水系统向两个或两个以上生产装置供水时,清洗、预膜应采取不同步开车的处理措施。

3.6.6 循环冷却水系统清洗、预膜水应通过旁路管直接回到冷却塔集水池。

4 旁流水处理

4.0.1 循环冷却水处理设计中有下列情况之一时,应设置旁流水处理设施:

4.0.1.1 循环冷却水在循环过程中受到污染,不能满足循环冷却水水质标准的要求;

4.0.1.2 经过技术经济比较,需要采用旁流水处理以提高设计浓缩倍数;

4.0.1.3 生产工艺有特殊要求。

4.0.2 旁流水处理设计方案应根据循环冷却水水质标准,结合去除的杂质种类、数量等因素综合比较确定。

4.0.3 敞开式系统采用旁流过滤方案去除悬浮物时,其过滤水量可按下式计算:

式中Qsf——旁流过滤水量( /h);

Cms——补充水的悬浮物含量(mg/L);

Crs——循环冷却水的悬浮物含量(mg/L);

Css——旁流过滤后水的悬浮物含量(mg/L);

A——冷却塔空气流量( /h);

Ca——空气中含尘量(g/ );

Ks——悬浮物沉降系数,可通过试验确定。当无资料时可选用0.2。

4.0.4 敞开式系统的旁流过滤水量亦可按循环水量的1%~5%或结合国内运行经验确定。

4.0.5 密闭式系统宜设旁滤处理设施,旁滤量宜为循环水量的2%~5%。

4.0.6 当采用旁流水处理去除碱度、硬度、某种离子或其它杂质时,其旁流水量应根据浓缩或污染后的水质成份、循环冷却水水质标准和旁流处理后的出水水质要求等按下式计算确定:

式中Qsi——旁流处理水量( /h);

Cmi——补充水中某项成份的含量(mg/L);

Cri——循环冷却水中某项成份的含量(mg/L);

Csi——旁流处理后水中某项成份的含量(mg/L)。

5 补充水处理

5.0.1 敞开式系统补充水处理设计方案应根据补充水量、补充水的水质成份、循环冷却水的水质标准、设计浓缩倍数等因素,并结合旁流水处理和全厂给水处理的内容综合确定。

5.0.2 密闭式系统的补充水,应符合生产工艺对水质和水温的要求,可采用软化水、除盐水或冷凝水等。当补充水经除氧或除气处理后,应设封闭设施。

5.0.3 循环冷却水系统的补充水量可按下列公式计算:

5.0.3.1 敞开式系统

5.0.3.2 密闭式系统

式中α——经验系数,可取α=0.001。

5.0.4 密闭式系统补充水管道的输水能力,应在4t~6h内将系统充满。

5.0.5 补充水的加氯处理,宜采用连续投加方式。游离性余氯量可控制在0.1~0.2mg/L的范围内。

5.0.6 补充水应控制铝离子的含量。

6 排水处理

6.0.1 循环冷却水系统的排水应包括系统排污水、排泥、清洗和预膜的排水、旁流水处理及补充水处理过程中的排水等,当水质超过排放标准时,应结合下列因素确定排水处理设计方案:

6.0.1.1 排水的水质和水量;

6.0.1.2 排放标准或排入全厂污水处理设施的水质要求;

6.0.1.3 重复使用的条件。

6.0.2 排水处理设施的设计能力应按正常的排放量确定。当排水的水质、水量变化较大,影响污水处理设施正常运行时,应设调节池。

6.0.3 系统清洗、预膜的排水和杀菌灭藻剂毒性降解所需的调节设施,宜结合全厂的排水调节设施统一设计。

6.0.4 当排水需要进行生物处理时,宜结合全厂的生物处理设施统一设计。

6.0.5 密闭式系统因试车、停车或紧急情况排出含有高浓度药剂的循环冷却水时,应设置贮存设施。

7 药剂的贮存和投配

7.0.1 循环冷却水系统的水处理药剂宜在全厂室内仓库贮存,并应在循环冷却水装置区内设药剂贮存间。液氯和非氧化性杀菌灭藻剂应渗专用仓库或贮存间贮存。

7.0.2 药剂的贮存量应根据药剂的消耗量、供应情况和运输条件等因素确定,或按下列要求计算:

7.0.2.1 全厂仓库中贮存的药剂量可按15~30d消耗量计算;

7.0.2.2 贮存间贮存的药剂量可按7~10d消耗量计算;

7.0.2.3 酸贮罐容积宜按一罐车的容积加10d消耗量计算。

7.0.3 药剂在室内的堆放高度宜符合下列规定:

7.0.3.1 袋装药剂为1.5~2.0m;

7.0.3.2 散装药剂为1.0~1.5m;

7.0.3.3 桶装药剂为0.8~1.2m。

7.0.4 药剂贮存间与加药间宜相互毗连,并设运输和起吊设备。

7.0.5 浓酸的装卸和投加应采用负压抽吸、泵输送或重力自流,不应采用压缩空气压送。

7.0.6 酸贮罐的数量不宜少于2个。贮罐应设安全围堰或放置于事故池内,围堰或事故池应作内防腐处理并设集水坑。

7.0.7 药剂溶解槽的设置应符合下列规定:

7.0.7.1 溶解槽的总容积可按8~24h的药剂消耗量和5%~20%的溶液浓度确定;

7.0.7.2 溶解槽应设搅拌设施;

7.0.7.3 溶解槽宜设一个;

7.0.7.4 易溶药剂的溶解槽可与溶液槽合并。

7.0.8 药剂溶液槽的设置应符合下列规定:

7.0.8.1 溶液槽的总容积可按8~24h的药剂消耗量和1%~5%的溶液浓度确定;

7.0.8.2 溶液槽的数量不宜少于2个;

7.0.8.3 溶液槽宜设搅拌设施,搅拌方式应根据药剂的性质和配制条件确定。

7.0.9 液态药剂宜原液投加。

7.0.10 药剂溶液的计量宜采用计量泵或转子流量计,计量设备宜设备用。

7.0.11 液氯计量应有瞬时和累计计量。加氯机出口宜设转子流量计进行瞬时计量,氯瓶宜设磅秤进行累计计量。

7.0.12 加氯机的总容量和台数应按最大小时加氯量确定。加氯机宜设备用。

7.0.13 加氯间必须与其它工作间隔开,并应符合下列规定:

7.0.13.1 应设观察窗和直接通向室外的外开门;

7.0.13.2 氯瓶和加氯机不应靠近采暖设备;

7.0.13.3 应设通风设备,每小时换气次数不宜小于8次。通风孔应设在外墙下方;

7.0.13.4 室内电气设备及灯具应采用密闭、防腐类型产品,照明和通风设备的开关应设在室外;

7.0.13.5 加氯间的附近应设置防毒面具、抢救器材和工具箱。

7.0.14 当工作氯瓶的容量大于或等于500kg时,氯瓶间应与加氯间隔开,并应设起吊设备;当小于500kg时,氯瓶间和加氯间宜合并,并宜设起吊设备。

7.0.15 向循环冷却水直接投加浓酸时,应设置酸与水的均匀混合设施。

7.0.16 药剂的贮存、配制、投加设施、计量仪表和输送管道等,应根据药剂的性质采取相应的防腐、防潮、保温和清洗的措施。

7.0.17 药剂贮存间、加药间、加氯间、酸贮罐、加酸设施等,应根据药剂性质及贮存、使用条件设置生产安全防护设施。

7.0.18 循环冷却水系统可根据药剂投加设施的具体需要,结合循环冷却水处理的内容和规模设置维修工具。

8 监测、控制和化验

8.0.1 循环冷却水系统监测仪表的设置应符合下列要求:

8.0.1.1 循环给水总管应设流量、温度和压力仪表;

8.0.1.2 循环回水总管宜设流量、温度和压力仪表;

8.0.1.3 旁流水管、补充水管应设流量仪表;

8.0.1.4 换热设备对腐蚀率和污垢热阻值有严格要求时,应在换热设备的进水管或出水管上设流量、温度和压力仪表。

8.0.2 循环冷却水系统宜设模拟监测换热器、监测试片器和粘泥测定器。

8.0.3 循环冷却水系统宜在下列管道上设置取样管:

(1)循环给水总管;

(2)循环回水总管;

(3)补充水管;

(4)旁流水出水管;

(5)换热设备出水管。

8.0.4 循环水泵的吸水池或冷却塔的集水池应设液位计,水池的水位与补充水进水阀门宜用联锁控制。吸水池宜设低液位报警器。

8.0.5 循环冷却水系统采用加酸处理时,应对pH值进行检测。

8.0.6 化验室的设置应根据循环冷却水系统的水质分析要求确定。日常检测项目的化验设施宜设置在循环冷却水装置区内,非日常检测项目可利用全厂中央化验室的设施或与其它单位协作检测。

8.0.7 以水质化验和微生物分析为主的化验室,宜设水质分析间、天平间、试剂间、仪器间、生物分析间和更衣间等。

8.0.8 水质日常检测项目包括下列内容:

(1)pH值;

(2)硬度;

(3)碱度;

(4)钾离子;

(5)电导率;

(6)悬浮物;

(7)游离氯;

(8)药剂浓度。

8.0.9 循环冷却水水质化验可根据具体要求增加以下检测项目:

(1)微生物分析;

(2)垢层与腐蚀产物的成份分析;

(3)腐蚀速率测定;

(4)污垢热阻值测定;

(5)生物粘泥量测定;

(6)药剂质量分析。

8.0.10 循环冷却水宜每季进行水质全分析。

附录A 水质分析项目表

水样(水源) 名称:外观:

取样地点:水温:℃

取样日期:

发表评论

评论列表

  • 丑味夏见(2022-07-02 19:58:05)回复取消回复

    4)、《石油化工企业设计防火规范》(GB50160-2008)、《石油库设计规范》(GB50074-2014)、《储罐区防火堤设计规范》(GB50351-2014)等有关规定执行。最大降雨量确定按《室外排水设计规范》(GB50014-

  • 孤央宠臣(2022-07-03 05:36:01)回复取消回复

    用品,而革基布则是PU革的基础材料,市场需求量极大,某县县现有织布厂20多家,织布机1500多台,年产革基布9000万米,以往某县县各织布厂生产的革基坯布未经漂染加工直接销往外地,产品附加值较低。福建省某某印染有限公司在某县县埔头工业区建设年产PU革基布3000万米这一

  • 只影棕眸(2022-07-03 04:09:12)回复取消回复

    要来自退浆、煮炼、漂白、染色和整理工段,各工段废水特点如下:6.1.1 退浆废水 退浆是利用化学药剂去除纺织物上的杂质和浆料,便于下道工序的加工,此部分废水所含杂质纤维较多。以往由于纺织厂用淀粉为原料,故废水中BOD5浓度很高,是整个印染废水中BOD5的主