b2c信息网

您现在的位置是:首页 > 国际新闻 > 正文

国际新闻

浙江精细化工污水除臭价格(污水处理厂除臭设备厂家)

hacker2023-02-22 01:30:36国际新闻127
本文目录一览:1、污水处理厂除臭的方式有哪些?其运行成本又如何?2、

本文目录一览:

污水处理厂除臭的方式有哪些?其运行成本又如何?

1.污水处理厂气态污染物的特征及来源

污水处理厂的气态污染物以挥发性有机物以及硫化氢、甲硫醇、氨等恶臭物质为主,臭气的扩散对室内外空气环境影响严重,直接影响到工人的身体健康和工作效率,并对周围居民的生活产生影响。

根据污水处理的过程,这些臭气产生源可分为污水处理系统和污泥处理系统。污水处理系统中的臭气源主要分布在进水头部、预处理、初级处理及滤池反冲洗液、污泥处理上清液等,曝气池的搅拌和充氧也会产生部分臭气。污泥处理系统中的臭气来源主要分布在污泥浓缩、厌氧消化后的污泥脱水和污泥堆放、外运过程。主要臭气产生源、产生原因及其相对污染程度详见表1。

表1 污水处理中的臭气源

从表1中可以看出,污水前处理部分(污水提升泵站、格栅、沉砂池)以及生物反应中的厌氧调节池和污泥处理部分(浓缩池、储泥池、脱水间等)是除臭的重点;曝气池负荷低,一般可不考虑除臭措施。

2.各种除臭方法的原理及特点

污水处理过程中产生的恶臭物质大多数是有机化合物,主要由碳、氮和硫元素组成,例如:低分子脂肪酸、胺类、醚类、卤代烷以及脂肪族的、芳香族的、杂环的氮或硫化物等。这些物质都带有活性基团,容易发生化学反应,特别是被氧化。当活性基团被氧化后,气味就消失。

化学除臭法:利用臭气成分与化学药液的主要成分间发生不可逆的化学反应,生成新的无臭物质以达到脱臭的目的;因臭气成分的不同需要选择相应的化学药剂。主要方法有:空气氧化法、化学氧化法、洗涤-吸附法(湿式吸收氧化法)、吸附-氧化法等

生物除臭法:利用微生物将臭味气体中的有机污染物降解或转化为无害或低害类物质的过程。主要方法有:生物过滤法、土壤法、填充塔式生物脱臭法等。

离子除臭法:空气在通过高能离子发生装置时,氧气分子受到经过发生装置发射出的高能量电子碰撞而形成分别带有正、负电荷的氧离子。这些正、负氧离子具有较强的活动性,在一系列反应后,将含C、H、S元素的化合物最终形成小分子化合物CO2、H2O 、SO2,无二次污染物产生;并且还能有效地破坏空气中细菌的生存环境,降低室内空气中的细菌浓度;离子在与空气中微小固体颗粒碰撞后,使颗粒荷电并产生凝聚效应,使得传统过滤方式不能捕捉的且对人体有害的微小颗粒变成可以捕集或靠自身重力而沉降下来,达到净化空气的目的。

采用高能离子发生装置,借助通风管路系统向散发臭气的空间送入可控浓度的正、负氧离子空气,用离子空气“罩住”污染源表面(如污水池等),使离子在极短的时间内与有害气体分子发生反应,扼制其扩散并降低其浓度,保证现场的操作人员在良好的环境中工作,并且还能对仪器仪表起到减少锈蚀、延长使用寿命的作用。

ⅰ)化学法:

(1)为达到最佳的除臭效果,通常与其它方法组合使用;如活性炭吸附塔配于其后。

(2)由于化学试剂对恶臭气体的去除有其局限性,若要大范围的去除多种化学成分的气体,就要使用多种化学药品;并且随着化学反应的增多,生成了许多中间化合物,不可避免的对环境造成二次污染和能耗增加;

(3)化学法除臭方法是通过风道,将污染源的臭气引出,经过一系列装置,与其化学试剂发生化学反应,使气体达标排放;但对室内空气环境无改善作用;并且对除臭装置、管道及水处理设备,都有不同程度的腐蚀性;

(4)系统连贯性较强,需要连续性运行较长时间;自动化要求较高;由于需要连续使用气体输送设备和化学药剂,费用取决于化学药品的消耗量,因此运行成本相对较高;

(5)一次性投资较大,一旦系统建成,不易调整;投资灵活性较差;系统中管道投资比较大;维修费用较高;新建项目需考虑占地及动力、公用设施的预留;

(6)系统安装周期长;调试复杂。

ⅱ)生物法:

(1)通过气体输送系统,将污染源的臭气引出,并且臭气经过生物载体时有较大的阻力,因此动力消耗大,对室内空气环境无明显改善作用,臭气对气体输送设备及风道有腐蚀作用。

(2)根据采取生物除臭方式的不同,投资差异大,投资灵活性较差;

(3)占地面积大,需要新建相应的建、构筑物;

(4)系统安装调试周期长,除臭效果随系统运行时间的增加,需不断定期更换生物载体,因此运行成本高,系统维护费用较高;

(5)对外部环境要求严格,表现在滤料的均一性、透气性、湿度、温度和pH值等方面;

(6)对外部环境污染较小,基本上无二次污染物产生。

ⅲ)离子法:

(1)离子净化采取以人为的本主动除臭方式,在污染源处消除污染,不仅能扼制有害气体的扩散;同时能够满足人们感觉舒适时所需的负离子量,从根本上改善工作环境;处理后的气体达标并直接排入大气,一步到位地解决室内外空气污染问题。

(2)初期投资小,可根据投资方资金条件,一次或多次投资;

(3)无须考虑其占地面积;节约土地;无基建费用;

(4)系统独立,安装、调试简单、方便、周期短;可根据需要随时随地改造,增加或取消;控制方法选择自控、手控均可;管道投资少;除除臭区域需要相对密闭外,无特殊要求;运行成本低;系统维护费用少;无须设岗;

(5)对于单体设备,体积小,重量轻;安装无特殊要求;使用方便;可以根据需要随时运行或关闭;操作简单,易于掌握;

(6)系统设备维修量小、时间短;在发射管寿命期内,仅需简单的定期清洁工作;一旦出现故障,可以保证在短时间内排除或更换备件、备机;

(7)无二次污染物产生。

几种除臭方法的比较详见表2。

3. 污水处理厂除臭方法的比选

 目前,城市污水处理厂的除臭处理实例较少,仅有的一些实例也是依托于国外技术和使用国外的主要核心材料和设备。虽然现状如此,但污水处理厂的臭气治理问题在我国已受到越来越多的关注,严格执行恶臭污染物排放标准,加强对恶臭的监测与治理是污水处理厂今后的发展要求。

在我国,采用化学法对污水厂进行除臭处理的历史较长,并有很多先例,但由于种种原因,如需要消耗大量的水、化学溶液和动力,产生二次污染物,对装备、管道腐蚀严重等,对臭气的处理效果和运行状态不甚理想,近年来,已经渐渐被新兴的生物法所取代。

与化学法相比,生物法虽然有投资小、处理废气污染少、不产生二次污染等优点,但是,经过一段时间的运行,生物法的局限性也逐渐显露出来:能耗大、占用土地、生物滤材消耗大、运行成本高等,并且室内空气品质及工作人员的工作环境仍旧没有得到有效的改善,因此许多方面还需要进一步的理论研究和实践经验总结.更多污水处理技术资料请参考易净水网资料库ep360.cn。

采用离子法净化污水处理厂的气态污染物,在国外是一种成熟并且行之有效的、在国内尚属于新兴技术的方法,最突出的特点是以人为本,在污染源处消除污染,从根本上改善了室内外空气品质及工作人员的工作环境;从污水处理厂的无害化等和有效保护环境的角度出发,离子法净化污水处理厂的气态污染物,是非常有前途的。

表3是对某个城市污水处理厂的除臭工艺进行的技术经济比较。该厂采用中途泵站加压提升进水,因而免去了进水泵房;污水处理采用涡流沉砂和微孔曝气氧化沟的方式。根据工程的实际情况,污水厂对污泥脱水车间进行了除臭设计。

表3 技术经济比较表

根据以上技术、经济比较,确定污水处理厂的除臭方法采用高能离子法,其除臭设计的换气次数为脱水机房 8次/小时。

4. 结论

综上所述,几种除臭方法各有特点,而利用H2O2和高能离子脱臭则是以后及未来发展的主要方向。在利用各自的优点基础上,加以改进、优化,达到造福于民的目的。

活性炭使用有什么优点?

活性炭是国际公认的吸毒能手,活性炭口罩,防毒面具都使用活性炭。清润活性炭利用活性炭的物理作用除臭,去毒;无任何化学添加剂,对人身无影响。喷剂等药物治理易造成二次污染,且可能损坏家具,而活性炭属物理吸附,很安全,对人体无害,对家具有防霉,防腐的作用。

某些产品提倡一次性去除(专家质疑,不可信),而家里的毒气的释放是一个缓慢的过程,所以今天去除了,过几天又有味道了,而且价格低。而活性炭有效吸附期为5-8个月刚好与之相配对。清润活性炭产品采用透气性包装,使用方便,活性炭价格较低,在烈日暴晒下可以反复

使用,易保存,在密封条件下3-10年不变质。用途:鱼缸净水,保藏书画古籍最怕霉变虫咬,冰箱,卫生间,车内均可以达到消毒除臭等目的。活性炭是人类防毒、除毒、脱色、去臭的得力助手。

污水厂除臭厂家

1.三塔卢家的除臭喷雾,很好闻,可以去异味。2.小林,小林,小林,小林,快美特CARMATE4。世界生活5,一个工匠5。博特尼品牌介绍:博特尼隶属于广州博特尼化工有限公司,是一家致力于制造和销售高科技领域的气雾剂和膏状罐装环保精细化工产品的外商独资企业。其产品包括汽车美容养护、化工装饰五金、摩托车维修、进口特种喷漆、日化系列产品、绿色隔热涂料等。

1.化学吸收法是通过化学药剂(主要是碱液)吸收空气中的H2S等污染物。除臭装置由除臭罐和再生塔组成。罐的直径与高度之比通常约为1∶5。气味由通风设备收集,并通过空气导管从除臭罐的下部进入除臭罐。浓度为2%-3%的碳酸钠溶液用作气味吸收剂。这种方法的优点是:处理效果好,运行稳定,抗冲击负荷能力强;缺点是需要定期更换药剂,运行成本高。

2.生物法是通过附着在填料上的生物膜降解空气中的臭气。生物膜生长、成熟和生物降解的过程是一个生物培养过程。生物膜中微生物所需的营养物质来自污水中的有机物,污水处理厂一般采用原污水喷洒填料。除臭池停留时间为1-3min(视臭气浓度而定),入口流速为2-3m/s,这种方法的优点是在加强管理的情况下,处理效果好,运行费用很低(与另外两种方法相比)。缺点是受进气浓度的影响,处理效果不稳定,对喷淋污水中的有机物浓度有一定要求。

化工废水如何处理?

化工废水的基本特征为极高的COD、高盐度、对微生物有毒性,是典型的难降解废水,是目前水处理技术方面的研究重点和热点。化工废水的特征分析如下:

(1)水质成分复杂,副产物多,反应原料常为溶剂类物质或环状结构的化合物,增加了废水的处理难度;

(2)废水中污染物含量高,这是由于原料反应不完全和原料、或生产中使用的大量溶剂介质进入了废水体系所引起的;

(3)有毒有害物质多,精细化工废水中有许多有机污染物对微生物是有毒有害的,如卤素化合物、硝基化合物、具有杀菌作用的分散剂或表面活性剂等;

(4)生物难降解物质多,B比C低,可生化性差;

(5)废水色度高。

化工废水处理方法:

废水处理技术已经经过了100多年的发展,污水中的污染物种类、污水量是随着社会经济发展、生活水平的提高而不断增加,污水处理技术也随着科学技术的发展而发生了日新月异的变化,同时,旧的污水处理技术也不断被革新和发展着。尤其现在的化工废水中的污染物是多种多样的,往往用一种工艺是不能将废水中所有的污染物去除殆尽的。用物化工艺将化工废水处理到排放标准难度很大,而且运行成本较高;化工废水含较多的难降解有机物,可生化性差,而且化工废水的废水水量水质变化大,故直接用生化方法处理化工废水效果不是很理想。

针对化工废水处理的这种特点,我们认为对其处理宜根据实际废水的水质采取适当的预处理方法,如絮凝、内电解、电解、吸附、光催化氧化等工艺,破坏废水中难降解有机物、改善废水的可生化性;再联用生化方法,如SBR、接触氧化工艺,A/O工艺等,对化工废水进行深度处理。

目前,国内对处理化工废水工艺的研究也趋向于采用多种方法的组合工艺。例如,采取内电饵混凝沉淀—厌氧—好氧工艺处理医药废水、采用大孔吸附树脂吸附和厌氧—好氧生物处理—絮凝沉淀法处理有机化工废水、采用絮凝—电饵法联用处理麻黄素废水、采取臭氧一生物活性碳工艺去除水中有机污染物、采用的光催化氧化—内电饵—sBR组合方法处理高浓化工废水都取得了比较好的结果。

活性炭的分类与鉴别

活性炭作为人造材料,是在1900年和1901年才发明的,发明者Raphael von Ostrejko,取得英国专利B.P.14224(1900);

英国专利B.P.18040(1900)德国专利Ger.P.136792(1901)。

他发明将金属氯化物炭化植物源原料或用二氧化碳或水蒸气与炭化材料反应制造活性炭。1911年在维也纳附近的工厂首次用

于工业生产,当时产品是粉状活性炭,商品名使Epomit;同年在荷兰有Norit上市;1912年在捷克斯洛伐克又Carboraffin出售。

(Ger.Pat.290656)。

回顾百年来世界活性炭应用的历史,不妨粗略划分为三个阶段:

(1)第一阶段,从20世纪初到约20世纪20年代为萌芽阶段:

(2)第二阶段,从约20世纪20年代中期为中期为成长阶段;

(3)第三阶段,从20世纪中期到20世纪末期为发展阶段,发展成为环保大应用阶段。

这三个阶段可用活性炭应用历程中两件历史性大事。作为划分的界限。

第一件大事使活性炭防毒面具,在20世纪20年代在第一次世界大战中的应用。可以次作为划分活性炭应用历史的第一阶段和

第二阶段的界限。

活性炭在初期主要应用使粉炭在糖业中逐步代替了原来的骨炭。在20世纪20年代的第一次世界大战中出现的颗粒大量应用于

防毒面具。这是工业化学史辉煌的一页。当时荷兰的Norit和捷克斯洛伐克、德国=法国=瑞士等国的制造商和批发商曾成立一个联

合公司,说明在欧洲萌芽的活性炭也是广为看好的新兴产业。

通过防毒面具应用的推动,活性炭历史进入了第二阶段,活性炭市场不断扩大,活性炭的吸附和催化功能在众多行业的精制

、回收、合成上的应用陆续开发,美国等的活性炭厂陆续开设。在20世纪中叶不断拓展应用面的活性炭,被视为“万能吸附剂”。

第二件大事是活性炭除臭作用,在20世纪40年代数以百计的自来水厂中采用了活性炭除臭。以此作为划分活性炭应用历史的

第二阶段与第三阶段的界限。

1927年美国芝加哥自来水厂发生了广大居民难以接受的自来水恶臭事故,这是由于原水中的苯酚和消毒用的氯生成异臭所致。

德国等地的自来水厂也发生了同样的事故,这些事故都是用活性炭来解决的。

此后,随着环境保护日益受到重视,政府法令的日趋严格。活性炭不仅在净水方面,而且在净气等方面的用量剧增,使得在20

世纪的后半叶,环保产业成为活性炭应用的大户。由此活性炭历史进入了第三阶段,即发展阶段。

我国活性炭在应用历史简分为三个阶段。

(1)第一阶段使20世纪40年代以前,我国制药工业、化学工业中使用活性炭量大,都用进口货,例如用Carboraffin牌的活性炭。

(2)第二阶段自20世纪50年代初开始,国产活性炭上市。1951年沈阳和抚顺的单管炉厂、青岛的反射炉闷烧法厂、上好的电热

活化法厂,接着又氯化锌活化法厂,1958年福建、杭州、广州、烟台、东北等地纷纷建厂,1966年太原开创斯列普活化法厂,随后

我国陆续开设数以百计的斯列普炉厂。此外,还有不少的转炉、粑式炉等工厂。总生产能力从1951年的三五十吨猛增到20世纪80年

代的近十万吨。

生产与应用相互促进,活性炭的应用范围被迅速开拓。从原来单一的通用炭向多种的专用炭发展,例如净水炭、糖炭、味精炭、

油脂炭、黄金炭、载体炭、药用炭、针剂炭、试剂炭等等,足见活性炭因国内经济蒸蒸日上而应用量速增,又因产量扩大、陈本降低

而使出口量上升。我国活性炭的应用,不仅在国内市场发展,而且进入了国际市场。活性炭是一种非常优良的吸附剂,它是利用木炭、

竹炭、各种果壳和优质煤等作为原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加

工制造而成。它具有物理吸附和化学吸附的双重特性,可以有选择的吸附气相、液相中的各种物质,以达到脱色精制、消毒除臭和去

污提纯等目的。检验标准可按照中国国标GB,或按照其他国家标准,如:美国ASTM,日本JIS,德国DIN标准等。

活性炭广泛应用于工农业生产的各个方面,如石化行业的无碱脱臭(精制脱硫醇)、乙烯脱盐水(精制填料)、催化剂载体(钯、

铂、

铑等)、水净化及污水处理;电力行业的电厂水质处理及保护;化工行业的化工催化剂及载体、气体净化、溶剂回收及油脂等的

脱色、精制;食品行业的饮料、酒类、味精母液及食品的精制、脱色;黄金行业的黄金提取、尾液回收;环保行业的污水处理、废气

及有害气体的治理、气体净化;以及相关行业的香烟滤嘴、木地板防潮、吸味、汽车汽油蒸发污染控制,各种浸渍剂液的制备等。活

性炭在未来将会有极好的发展前景和广阔的销售市场。

活性碳主要用途:

1.用于液相吸附类活性碳

•自来水,工业用水,电镀废水,纯净水,饮料,食品,医药用水净化及电子超纯水制备。

•蔗糖、木糖、味精、药品、柠檬酸、化工产品、食品添加剂的脱色、精制和去杂质纯化过滤

•油脂、油品、汽油、柴油的脱色、除杂、除味、酒类及饮料的净化、除臭、除杂

•精细化工、医药化工、生物制药过程产品提纯、精制、脱色、过滤。

•环保工程废水、生活废水净化、脱色、脱臭、降COD

2.用于气相吸附类活性碳

•苯、甲苯、二甲苯、丙酮、油气、CS2等有机溶剂吸附与回收。

•香烟过滤嘴、装修除味、室内空气净化(甲醛,苯等的去除),工业用气的净化(如CO2、N2等)

•石化行业生产、天然气净化、脱硫、除臭、废气的治理

•生化、油漆工业、地下场所、皮革工厂、动物饲养场所的空气净化、脱臭。

•烟道气的臭气吸附、硫化物吸附,汞蒸汽的去除,降低戴奥辛的生成。

3.用于高要求领域活性碳

•催化剂及催化剂载体(钯炭催化剂、钌炭催化剂、铑炭催化剂、铂炭催化剂),贵重金属催化剂及合成金刚石、黄金提取。

•血液净化、汽车炭罐、高性能燃料电池、双电层超级电容器、锂电池负极材料、贮能材料、军事、航天等高要求领域。

影响活性炭吸附的主要因素

①活性炭吸附剂的性质

其表面积越大,吸附能力就越强; 活性炭是非极性分子,易于吸附非极性或极性很低的吸附质;活性炭吸附剂颗粒的大小,细孔

构造和分布情况以及表面化学性质等对吸附也有很大的影响。

②吸附质的性质

取决于其溶解度、表面自由能、极性、吸附质分子的大小和不饱和度、附质的浓度等

③废水PH值

活性炭一般在酸性溶液中比在碱性溶液中有较高的吸附率。

PH值会对吸附质在水中存在的状态及溶解度等产生影响,从而影响吸附效果。

④共存物质

共存多种吸附质时,活性炭对某种吸附质的吸附能力比只含该种吸附质时的吸附能力差

⑤温度

温度对活性炭的吸附影响较小

⑥接触时间

应保证活性炭与吸附质有一定的接触时间,使吸附接近平衡,充分利用吸附能力。

活性炭化学性

活性炭的吸附除了物理吸附,还有化学吸附。活性炭的吸附性既取决于孔隙结构,又取决于化学组成。

活性炭不仅含碳,而且含少量的化学结合、功能团开工的氧和氢,例如羰基、羧基、酚类、内酯类、醌类、醚类。这些表面上含

有的

氧化物和络合物,有些来自原料的衍生物,有些是在活化时、活化后由空气或水蒸气的作用而生成。有时还会生成表面硫化物和氯化物。

在活化中原料所含矿物质集中到活性炭里成为灰分,灰分的主要成分是碱金属和碱土金属的盐类,如碳酸盐和磷酸盐等。

这些灰分含量可经水洗或酸洗的处理而降低。

活性炭催化性

活性炭在许多吸附过程中伴有催化反应,表现出催化剂的活性。例如活性炭吸附二氧化硫经催化氧化变成三氧化硫。

由于活性炭有特异的表面含氧化合物或络合物的存在,对多种反应具有催化剂的活性,例如使氯气和一氧化碳生成光气。

由于活性炭和载持物之间会形成络合物,这种络合物催化剂使催化活性大增,例如载持钯盐的活性炭,即使没有铜盐的催化剂存在,

烯烃的氧化反应也能催化进行,而且速度快、选择性高。

由于活性炭具有发达的细孔结构、巨大的内表面积和很好的耐热性、耐酸性、耐碱性,可作为催化剂的载体。例如,有机化学中

加氢、脱氢环化、异构化等的反应中,活性炭是铂、钯催化剂的优良载体。

活性炭机械性

(1)粒度:采用一套标准筛筛分法,求出留在和通过每只筛子的活性炭重量,表示粒度分布。

(2)静观密度或堆密度:饮食孔隙容积和颗粒间空隙容积的单位体积活性炭的重量。

(3)体积密度和颗粒密度:饮食孔隙容积而不饮食颗粒间空隙容积的单位体积活性炭的重量。

(4)强度:即活性炭的耐破碎性。

(5)耐磨性:即耐磨损或抗磨擦的性能。

这些机械性质直接影响活性炭应用,例如:密度影响容器大小;粉炭粗细影响过滤;粒炭粒度分布影响流体阻力和压降;破碎性影

活性炭的用途及种类

一、活性炭的用途

1、空气净化

2、污水处理场排气吸附

3、饮料水处理

4、电厂水预处理

5、废水回收前处理

6、生物法污水处理

7、有毒废水处理

8、石化无碱脱硫醇

9、溶剂回收

10、化工催化剂载体

11、滤毒罐

12、黄金提取

13、化工品储存排气净化

14、制糖、酒类、味精医药、食品精制、脱色

15、乙烯脱盐水填料

16、汽车尾气净化

17、PTA氧化装置净化气体

18、印刷油墨的除杂

二、活性炭的种类

由于原料来源、制造方法、外观形状和应用场合不同,活性炭的种类很多,到目前为止尚无精确的统计材料,大约有上千个品种。

按原料来源分

1. 木质活性炭

2. 兽骨、血炭

3. 矿物质原料活性炭

4. 其它原料的活性炭

5. 再生活性炭

按制造方法分

1. 化学法活性炭(化学炭)

2. 物理法活性炭

3. 化学–物理法或物理–化学法活性炭

按外观形状分

1. 粉状活性炭

2. 颗粒活性炭

3. 不定型颗料活性炭

4. 圆柱形活性炭

5. 球形活性炭

6. 其它形状的活性炭

按孔径分[2]

大孔 半径20 000nm

过渡孔 半径150 ~20 000nm

微孔 半径 150nm 活性炭的表面积主要是由微孔提供的,

[编辑本段]

活性炭产品的应用方向及领域

◎石化行业

无碱脱臭(精制脱硫醇)——重催的精制装置

乙烯脱盐水(精制填料)——乙烯装置

催化剂载体(钯、铂、铑等)——苯乙烯、连续重整装置

水净化及污水处理——上水及下水的深度处理

◎电力行业

电厂水质处理及保护——锅炉装置

◎化工行业

化工催化剂及载体、气体净化、溶剂回收、及油脂等的脱色、精制

◎食品行业

饮料、酒类、味精母液及食品的精制、脱色

◎黄金行业

黄金提取——适用炭浆法、堆浸法提金工艺

尾液回收——金矿的废物利用及环境保护

◎环保行业

用于污水处理、废气及有害气体的治理、气体净化

◎相关行业

香烟滤嘴、木地板防潮、吸味、汽车汽油蒸发污染控制,各种浸渍剂液的制备等,比如活性炭可以作为活性碳罐的填充物用来生产摩托车碳罐 汽车碳罐等。

活性炭吸附法在水处理中的应用

活性炭吸附广泛应用于在城市污水处理、饮用水及工业废水处理。

⑴城市污水处理

废水中的一些有机物是难于为微生物或一般氧化法所氧化分解的,如酚、苯、石油及其产品、杀虫剂、洗涤剂、合成染料、胺类化合物以及许多人工合成有机物,经生化处理后很难达到对排放要求较高的水体中排放的标准,也严重影响废水的回用,因此需要深度处理。

由于活性炭对有机物的吸附能力大,在废水深度处理中得到广泛的应用,具有以下优点:

①处理程度高,城市污水用活性炭进行深度处理后,BOD可降低99%,TOC可降到1~3mg/L。

②应用范围广,对废水中绝大多数有机物都有效,包括微生物难于降解的有机物。

③适应性强,对水量及有机物负荷的变动有较强的适应性能,可得到稳定的处理效果。

④粒状炭可进行再生重复使用,被吸附的有机物在再生过程中被烧掉,不产生污泥。

⑤可回收有用物质,例如用活性炭处理含酚废水,用碱再生吸附饱和的活性炭,可以回收酚钠盐。

⑥设备紧凑、管理方便。

⑵饮用水深度处理中的应用

活性炭吸附是建立在常规给水处理基础上,一般设置在砂过滤之后,也可与砂滤料组成双层滤料过滤或以活性炭过滤代替砂过滤。

在利用活性炭吸附进行饮用水深度处理的过程中,发现在活性炭滤料上生长有大量的微生物,使出水水质提高且再生延长,于是发展了一种经济有效的去除水中的微污染物质的生物活性炭工艺,流程为原水—(加入混凝剂)—澄清—过滤(加入臭氧)再利用活性炭吸附,最后是出水。

⑶工业废水处理中的应用

很多工业废水很难或不能采用生化处理,采用其他方法时,有的不能达到排放标准,或运行费用较高,或操作较麻烦等,例如有毒的有机化合物和某些金属及其化合物等。工程实践表明,活性炭对这些物质有很强的吸附能力。

国内最先进的新型活性炭生产设备

一、《一步法生产活性碳的内热蒸汽转炉》——空卫高级椰壳活性炭由此专利设备精制而成!

最新活性炭专利型生产设备,为一种炭化、活化一步法生产活性碳的内热蒸汽转炉,包括炉体,其特征在于:所述炉体旋转时,其炉腔内前部为物料活化区,后部为物料碳化区,在炉体的物料活化区和物料碳化区内均设有蒸汽输入装置和空气输入装置,位于物料碳化区的空气输入装置与物料碳化区隔断连接,位于物料活化区的空气输入装置与物料活化区连通;位于物料碳化区的蒸汽输入装置与物料碳化区连通,位于物料活化区的蒸汽输入装置与物料活化区隔断连接。缩短了活性炭生产过程,降低了生产成本。

本专利一步法炭化、活化缩短了生产过程,能耗低、产品收率高、投资少、成本低。具有以下特点: 1、生产原料取材方便:可用任何果壳和木工下脚料做为生产原料。 2、生产成本低:活化过程产生的大量水煤气能够充分供给炭化、活化和余热锅炉使用且有剩余,生 产过程无需再加其他燃料和外接蒸汽,大大降低生产用燃料成本。 3、产品质量好:生产碘吸附值大于1150mg/g,亚甲基蓝兰吸值大于200mg/g的中高级性能活性炭 得率为13%-14%。

二、《外热、内热双功能活性碳生产装置》——空卫高级椰壳活性炭由此专利设备精制而成!

最新活性炭专利型生产设备,本专利节能环保、产品质量高,具有以下特点:

1、节能环保生产:利用先进的气体回收系统,使可燃气体充分燃烧和烟气二次回收利用,环保节能。 利用科学的蒸汽过热系统,将出料携带的大量热能进行回收过热水蒸气,供生产使用,实现了高 效节能。

2、温控均匀、产品得率高:该专利技术能够均匀分配和控制活化炉内的各段温度,确保产品活化合 理,得率高。

3、产品品质好:通过先进的工艺调试用,可合理调动硬件设施,实现产品合理活化,生产出多重技术 指标产品。

纳米材料在各个行业中的应用

纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。

在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。新材料的创新,以及在此基础上诱发的新技术。新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。纳米材料和纳米结构是当今新材料研究领域中最富有活力、对未来经济和社会发展有着十分重要影响的研究对象,也是纳米科技中最为活跃、最接近应用的重要组成部分。近年来,纳米材料和纳米结构取得了引人注目的成就。例如,存储密度达到每平方厘米400g的磁性纳米棒阵列的量子磁盘,成本低廉、发光频段可调的高效纳米阵列激光器,价格低廉高能量转化的纳米结构太阳能电池和热电转化元件,用作轨道炮道轨的耐烧蚀高强高韧纳米复合材料等的问世,充分显示了它在国民经济新型支柱产业和高技术领域应用的巨大潜力。正像美国科学家估计的“这种人们肉眼看不见的极微小的物质很可能给予各个领域带来一场革命”。纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。 1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米cu材料,硬度比粗晶cu提高5倍;晶粒为7urn的pd,屈服应力比粗晶pd高5倍;具有高强度的金属间化合物的增塑问题一直引起人们的关注,晶粒的纳米化为解决这一问题带来了希望,根据纳米材料发展趋势以及它在对世纪高技术发展所占有的重要地位,世界发达国家的政府都在部署本来10~15年有关纳米科技研究规划。美国国家基金委员会(nsf)1998年把纳米功能材料的合成加工和应用作为重要基础研究项目向全国科技界招标;美国darpa(国家先进技术研究部)的几个计划里也把纳米科技作为重要研究对象;日本近年来制定了各种计划用于纳米科技的研究,例如 ogala计划、erato计划和量子功能器件的基本原理和器件利用的研究计划,1997年,纳米科技投资1.28亿美元;德国科研技术部帮助联邦政府制定了1995年到2010年15年发展纳米科技的计划;英国政府出巨资资助纳米科技的研究;1997年西欧投资1.2亿美元。据1999年7月8日《自然》最新报道,纳米材料应用潜力引起美国白宫的注意;美国总统克林顿亲自过问纳米材料和纳米技术的研究,决定加大投资,今后3年经费资助从2.5亿美元增加至5亿美元。这说明纳米材料和纳米结构的研究热潮在下一世纪相当长的一段时间内保持继续发展的势头。 2国际动态和发展战略 1999年7月8日《自然》(400卷)发布重要消息 题为“美国政府计划加大投资支持纳米技术的兴起”。在这篇文章里,报道了美国政府在3年内对纳米技术研究经费投入加倍,从2.5亿美元增加到5亿美元。克林顿总统明年2月将向国会提交支持纳米技术研究的议案请国会批准。为了加速美国纳米材料和技术的研究,白宫采取了临时紧急措施,把原1.97亿美元的资助强度提高到2.5亿美元。《美国商业周刊》8 月19日报道,美国政府决定把纳米技术研究列人21世纪前10年前11个关键领域之一,《美国商业周刊》在掌握21世纪可能取得重要突破的3个领域中就包括了纳米技术领域(其它两个为生命科学和生物技术,从外星球获得能源)。美国白宫之所以在20世纪即将结束的关键时刻突然对纳米材料和技术如此重视,其原因有两个方面:一是德科学技术部1996年对2010年纳米技术的市场做了预测,估计能达到14400亿美元,美国试图在这样一个诱人的市场中占有相当大的份额。美国基础研究的负责人威廉姆斯说:纳米技术本来的应用远远超过计算机工业。美国白宫战略规划办公室还认为纳米材料是纳米技术最为重要的组成部分。在《自然》的报道中还特别提到美国已在纳米结构组装体系和高比表面纳米颗粒制备与合成方面领导世界的潮流,在纳米功能涂层设计改性及纳米材料在生物技术中的应用与欧共体并列世界第一,纳米尺寸度的元器件和纳米固体也要与日本分庭抗礼。1999年7月,美国加尼福尼亚大学洛杉矾分校与惠普公司合作研制成功 100urn芯片,美国明尼苏达大学和普林斯顿大学于1998年制备成功量子磁盘,这种磁盘是由磁性纳米棒组成的纳米阵列体系,10bit/s尺寸的密度已达109bit/s,美国商家已组织有关人员迅速转化,预计2005年市场为400亿美元。1988年法国人首先发现了巨磁电阻效应,到1997年巨磁电阻为原理的纳米结构器件已在美国问世,在磁存储、磁记忆和计算机读写磁头将有重要的应用前景。最近美国柯达公司研究部成功地研究了一种即具有颜料又具有分子染料功能的新型纳米粉体,预计将给彩色印橡带来革命性的变革。纳米粉体材料在橡胶、颜料、陶瓷制品的改性等方面很可能给传统产业和产品注入新的高科技含量,在未来市场上占有重要的份额。纳米材料在医药方面的应用研究也使人瞩目,正是这些研究使美国白宫认识到纳米材料和技术将占有重要的战略地位。原因之二是纳米材料和技术领域是知识创新和技术创新的源泉,新的规律新原理的发现和新理论的建立给基础科学提供了新的机遇,美国计划在这个领域的基础研究独占“老大”的地位。 3国内研究进展我国纳米材料研究始于80年代末,“八五”期间,“纳米材料科学”列入国家攀登项目。国家自然科学基金委员会、中国科学院、国家教委分别组织了8项重大、重点项目,组织相关的科技人员分别在纳米材料各个分支领域开展工作,国家自然科学基金委员会还资助了20多项课题,国家“863”新材料主题也对纳米材料有关高科技创新的课题进行立项研究。1996年以后,纳米材料的应用研究出现了可喜的苗头,地方政府和部分企业家的介入,使我国纳米材料的研究进入了以基础研究带动应用研究的新局面。目前,我国有60多个研究小组,有600多人从事纳米材料的基础和应用研究,其中,承担国家重大基础研究项目的和纳米材料研究工作开展比较早的单位有:中国科学院上海硅酸盐研究所、南京大学。中国科学院固体物理研究所、金属研究所、物理研究所、中国科技大学、中国科学院化学研究所、清华大学,还有吉林大学、东北大学、西安交通大学、天津大学、青岛化工学院、华东师范大学,华东理工大学、浙江大学、中科院大连化学物理研究所、长春应用化学研究所、长春物理研究所、感光化学研究所等也相继开展了纳米材料的基础研究和应用研究。我国纳米材料基础研究在过去10年取得了令人瞩目的重要研究成果。已采用了多种物理、化学方法制备金属与合金(晶态、非晶态及纳米微晶)氧化物、氮化物、碳化物等化合物纳米粉体,建立了相应的设备,做到纳米微粒的尺寸可控,并制成了纳米薄膜和块材。在纳米材料的表征、团聚体的起因和消除、表面吸附和脱附、纳米复合微粒和粉体的制取等各个方面都有所创新,取得了重大的进展,成功地研制出致密度高、形状复杂、性能优越的纳米陶瓷;在世界上首次发现纳米氧化铝晶粒在拉伸疲劳中应力集中区出现超塑性形变;在颗粒膜的巨磁电阻效应、磁光效应和自旋波共振等方面做出了创新性的成果;在国际上首次发现纳米类钙钛矿化合物微粒的磁嫡变超过金属gd;设计和制备了纳米复合氧化物新体系,它们的中红外波段吸收率可达 92%,在红外保暖纤维得到了应用;发展了非晶完全晶化制备纳米合金的新方法;发现全致密纳米合金中的反常hall-petch效应。近年来,我国在功能纳米材料研究上取得了举世瞩目的重大成果,引起了国际上的关注。一是大面积定向碳管阵列合成:利用化学气相法高效制备纯净碳纳米管技术,用这种技术合成的纳米管,孔径基本一致,约20urn,长度约100pm,纳米管阵列面积达到 3mm 3mm。其定向排列程度高,碳纳米管之间间距为100pm。这种大面积定向纳米碳管阵列,在平板显示的场发射阴极等方面有着重要应用前景。这方面的文章发表在1996年的美国《科学》杂志上。二是超长纳米碳管制备:首次大批量地制备出长度为2~3mm的超长定向碳纳米管列阵。这种超长碳纳米管比现有碳纳米管的长度提高1~2个数量级。该项成果已发表于1998年8月出版的英国《自然》杂志上。英国《金融时报》以“碳纳米管进入长的阶段”为题介绍了有关长纳米管的工作。三是氮化嫁纳米棒制备:首次利用碳纳米管作模板成功地制备出直径为3~40urn、长度达微米量级的发蓝光氮化像一维纳米棒,并提出了碳纳米管限制反应的概念。该项成果被评为1998年度中国十大科技新闻之一。四是硅衬底上碳纳米管阵列研制成功,推进碳纳米管在场发射平面和纳米器件方面的应用。五是制备成功一维纳米丝和纳米电缆,该成果研究论文在瑞典召开的1998年第四届国际纳米会议宣读后,许多外国科学家给予高度评价。六是用苯热法制备纳米氮化像微晶;发现了非水溶剂热合成技术,首次在300℃左右制成粒度达30urn的氮化锌微晶。还用苯合成制备氮化铬(crn)、磷化钴(cop)和硫化锑(sbs)纳米微晶,论文发表在1997年的《科学》杂志上。七是用催化热解法制成纳米金刚石;在高压釜中用中温(70℃)催化热解法使四氯化碳和钠反应制备出金刚石纳米粉,论文发表在1998年的《科学》杂志上。美国《化学与工程新闻》杂志还发表题为“稻草变黄金---从四氯化碳(cc14)制成金刚石”一文,予以高度评价。我国纳米材料和纳米结构的研究已有10年的工作基础和工作积累,在“八五”研究工作的基础上初步形成了几个纳米材料研究基地,中科院上海硅酸盐研究所、南京大学、中科院固体物理所、中科院金属所、物理所、中国科技大学、清华大学和中科院化学所等已形成我国纳米材料和纳米结构基础研究的重要单位。无论从研究对象的前瞻性、基础性,还是成果的学术水平和适用性来分析,都为我国纳米材料研究在国际上争得一席之地,促进我国纳米材料研究的发展,培养高水平的纳米材料研究人才做出了贡献。在纳米材料基础研究和应用研究的衔接,加快成果转化也发挥了重要的作用。目前和今后一个时期内这些单位仍然是我国纳米材料和纳米结构研究的中坚力量。在过去10年,我国已建立了多种物理和化学方法制备纳米材料,研制了气体蒸发、磁控溅射、激光诱导cvd、等离子加热气相合成等10多台制备纳米材料的装置,发展了化学共沉淀、溶胶一凝胶、微乳液水热、非水溶剂合成和超临界液相合成制备包括金属、合金、氧化物、氮化物、碳化物、离子晶体和半导体等多种纳米材料的方法,研制了性能优良的多种纳米复合材料。近年来,根据国际纳米材料研究的发展趋势,建立和发展了制备纳米结构(如纳米有序阵列体系、介孔组装体系、mcm-41等)组装体系的多种方法,特别是自组装与分子自组装、模板合成、碳热还原、液滴外延生长、介孔内延生长等也积累了丰富的经验,已成功地制备出多种准一维纳米材料和纳米组装体系。这些方法为进一步研究纳米结构和准一纳米材料的物性,推进它们在纳米结构器件的应用奠定了良好的基础。纳米材料和纳米结构的评价手段基本齐全,达到了国际90年代末的先进水平。综上所述,“八五”期间我国在纳米材料研究上获得了一批创新性的成果,形成了一支高水平的科研队伍,基础研究在国际上占有一席之地,应用开发研究也出现了新局面,为我国纳米材料研究的继续发展奠定了基础。10年来,我国科技工作者在国内外学术刊物上共发表纳米材料和纳米结构的论文2400多篇,在国际上排名第五位,其中纳米碳管和纳米团簇在1998年度欧洲文献情报交流会上德国马普学会固体所一篇研究报告中报道中国科技工作者发表论文已超过德国,在国际排名第三位,在国际历次召开的有关纳米材料和纳米结构的国际会议上,我国纳米材料科技工作者共做邀请报告24次。到目前为止,纳米材料研究获得国家自然科学三等奖1项,国家发明奖2项;院部级自然科学一、二等奖3项,发明一等奖3项,科技进步特等奖1项;申请专利 79项,其中发明专利占50%,已正式授权的发明专利6项,已实现成果转化的发明专利6项。最近几年,我国纳米科技工作者在国际上发表了一些有影响的学术论文,引起了国际同行的关注和称赞。在《自然》和《科学》杂志上发表有关纳米材料和纳米结构制备方面的论文6篇,影响因子在6以上的学术论文(phys.rev.lett,j.ain.chem.soc .)近20篇,影响因子在3以上的31篇,被sci和ei收录的文章占整个发表论文的 59%。 1998年 6月在瑞典斯特哥尔摩召开的国际第四届纳米材料会议上,对中国纳米材料研究给予了很高评价,指出这几年来中国在纳米材料制备方面取得了激动人心的成果,在大会总结中选择了8个纳米材料研究式作取得了比较好的国家在闭幕式上进行介绍,中国是在美国、日本、德国、瑞典之后进行了大会发言。

4 纳米产业发展趋势

(1)信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位。2000年,中国的信息产业创造了gdp5800亿人民币。纳米技术在信息产业中应用主要表现在3个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。因为不管通讯、集成还是显示器件,都要原器件,美国已经着手研制,现在有了单电子器件、隧穿电子器件、自旋电子器件,这种器件已经在实验室研制成功,而且可能在2001年进入市场。 ②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。

(2)环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。我们现在已经制备成功了一种对甲醛、氮氧化物、一氧化碳能够降解的设备,可使空气中的大于10ppm的有害气体降低到0.1ppm,该设备已进入实用化生产阶段;利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。

(3)能源环保中的纳米技术:合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源方面国外进展较快,就是把非可燃气体变成可燃气体。现在国际上主要研发能量转化材料,我国也在做,它包括将太阳能转化成电能、热能转化为电能、化学能转化为电能等。

(4)纳米生物医药:这是我国进入wto以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。

(5)纳米新材料:虽然纳米新材料不是最终产品,但是很重要。据美国测算,到21世纪30年代,汽车上40%钢铁和金属材料要被轻质高强材料所代替,这样可以节省汽油40%,减少co2,排放40%,就这一项,每年就可给美国创造社会效益1000亿美元。此外,还有各种功能材料,玻璃透明度好但份量重,用纳米改进它,使它变轻,使这种材料不仅有力学性能,而且还具有其他功能,还有光的变色、贮光,反射各种紫外线、红外线,光的吸收、贮藏等功能。

(6)纳米技术对传统产业改造:对于中国来说,当前是纳米技术切入传统产业、将纳米技术和各个领域技术相结合的最好机遇。首先是家电、轻工、电子行业。合肥美菱集团从1996开始研制纳米冰箱,可折叠的pvc磁性冰箱门封不发霉,用的是抗菌涂料,里面的果盘都采用纳米材料,发展轻工、电子和家用电器可以带动涂料、材料、电子原器件等行业发展;其次是纺织。人造纤维是化纤和纺织行业发展的趋势,中国纺织要在进入wto后能占据有利地位,现在就必须全方位应用纳米技术、纳米材料。去年关于保温被、保温衣的电视宣传,提到应用了纳米技术,特殊功能的有防静电的、阻燃的等等,把纳米的导电材料组装到里面,可以在11万伏的高压下,把人体屏蔽,在这一方面,纺织行业应用纳米技术形势看好;第三是电力工业。利用纳米技术改造20万伏和11万伏的变压输电瓷瓶,可以全方位提高11万伏的瓷瓶耐电冲击的性能,而且釉不结霜,其它综合性能都很好;第四是建材工业中的油漆和涂料,包括各种陶瓷的釉料、油墨,纳米技术的介入,可以使产品性能升级。

1999年8月20日《美国商业周刊》在展望21世纪可能有突破性进展的领域时,对生命科学和生物技术、纳米科学和纳米技术及从外星球上索取能源进行了预测和评价,并指出这是人类跨入21世纪面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为下一世纪先进的国家。挑战严峻,机遇难得,我们必须加倍重视纳米科技的研究,注意纳米技术与其它领域的交叉,加速知识创新和技术创新,为21世纪中国经济的腾飞奠定雄厚的基础。

对于纳米科技,科学的态度是积极参与,脚踏实地地推动这一前沿科技的健康发展,既不需要商业炒作,也不需要科学炒作。

参考资料:;ID=31153

发表评论

评论列表

  • 断渊空枝(2023-02-22 05:42:33)回复取消回复

    产活性炭上市。1951年沈阳和抚顺的单管炉厂、青岛的反射炉闷烧法厂、上好的电热活化法厂,接着又氯化锌活化法厂,1958年福建、杭州、广州、烟台、东北等地纷纷建厂,1966年太原开创斯列普活化法厂,随后我国陆续开设数以

  • 慵吋别れ(2023-02-22 11:04:36)回复取消回复

    剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。在开发新能源

  • 俗野绮烟(2023-02-22 12:04:23)回复取消回复

    化污水处理厂的气态污染物,是非常有前途的。表3是对某个城市污水处理厂的除臭工艺进行的技术经济比较。该厂采用中途泵站加压提升进水,因而免去了进水泵房;污水处理采用涡流沉砂和微孔曝