煤炭开发利用绿色路径研究(煤炭开发与利用中的环境问题)
本文目录一览:
什么是煤炭绿色开采?
煤炭绿色开采,是针对煤炭大量开采造成的环境问题提出的。煤炭开采可能造成一系列环境问题,如煤矿瓦斯事故、井下突水事故、地表沉陷、滑坡、农田及建筑设施的损坏、煤矸石占用良田且造成环境污染等等。煤炭绿色开采,就是使煤炭开采对矿区环境的扰动量小于区域环境容量,实现资源开发利用最优化和生态环境影响最小化。简单地讲,就是合理利用资源,优化技术,高效、持续、协调的发展煤炭工业,减少对环境的破坏,取得最佳的经济效益和社会效益。
煤炭开发地质环境状况及其对能源开发的影响研究
一、煤炭赋存的地质环境状况
1.地质概况
地质学中的鄂尔多斯盆地是指中朝板块西部连片分布中生界(特别是二叠系和侏罗系)的广阔范围。长期以来,地质工作者把它看作是一个独立的、自成体系的中生代沉积盆地。本书所研究的鄂尔多斯能源基地的范围与地质学中的鄂尔多斯盆地范围基本一致,大致在北纬34°~41°20',东经105°30'~111°30'。具体的地理边界为东起吕梁山,西抵桌子山、贺兰山、六盘山一线。南到秦岭北坡,北达阴山南麓,跨陕西、甘肃、宁夏、内蒙古、山西5省(区)。面积约40万km2。
鄂尔多斯盆地是一个不稳定的克拉通内部盆地,盆地基底形成后,在其后的盖层发展演化过程中,先后经历了坳拉槽—克拉通坳陷(内部和周边)—板内多旋回的陆相盆地及其前渊—周边断陷等盆地原型的多次演化,现在的鄂尔多斯盆地是上述若干个盆地原型的叠加(孙肇才等,1990)。从中生界开始,基底地层对于盖层的影响就已经很不明显,并且表层褶皱在盆地内部也极不发育。所以盆地内中生界以上的地层产状大都比较平缓,断裂和裂隙比较少。
鄂尔多斯盆地的基底岩系分为两类,一类是由变粒岩岩相(麻粒岩、浅粒岩、混合花岗岩及片麻状花岗岩等)组成的太古宇;另一类是由绿岩岩相组成为主(绿片岩、千枚岩、大理岩和变质伪火山岩)的中古元古界。基底岩系之上的沉积盖层年代自中元古界至第三系(古、新近系),累积最大厚度超过10000m。其中,中古元古代在全盆地范围内沉积了厚达1500m的长城系石英砂岩和蓟县系合叠层石的硅质灰岩。早古生代在盆地中部沉积了400~700m的碳酸岩海相沉积,在南缘和西缘同期沉积达4500m。晚石炭至早二叠世早期,在本区形成了一个统一的以煤系地层为特征的滨海相沉积,沉积厚度为150~530m。晚三叠世盆地范围内部形成内陆差异沉降盆地,包括了5个明显的陆相碎屑岩沉积旋回,即晚三叠世延长组,早中侏罗世延安组、中侏罗世直罗-安定组、早白垩世志丹群下部及上部(孙肇才,1990)。早白垩世末期的燕山中期运动,导致本区同中国东部滨太平洋区一起,在晚白垩世至第三纪(古、新近系)期间,作为一个统一的受力单元,在开阔褶皱基础上发生大面积垂直隆起。就在这个隆起背景上,形成了环鄂尔多斯中生代盆地的以汾、渭、银川和河套为代表的新生代地堑系,并在其中沉积了厚达数千米至万米的以新第三系(新近系)为主的地堑型沉积。而盆地中心部位的晚白垩世至第三纪(古、新近纪)地层大面积缺失。
第四纪以来,鄂尔多斯盆地中南部大部分地区沉积了大厚度的黄土;而其北部却由于隆起剥蚀而没有黄土沉积。
鄂尔多斯盆地南部大部分为黄土高原。黄土高原的地形外貌在很大程度上受古地貌的控制。基底平坦而未受流水切割的部分为黄土塬,而受到较强侵蚀的塬地则变为破碎塬。在陕北的南部和甘肃陇东地区的塬地保存较完好,如著名的洛川塬和董志塬。在流水和重力作用下,黄土地层连同基底遭到严重切割的地貌成为黄土梁和峁。另外,由于流水侵蚀还可形成狭窄的黄土冲沟和宽浅的黄土涧地,使梁峁起伏,沟壑纵横,地形支离破碎,是人为活动频繁、植被破坏与水土流失最为严重的地区。
鄂尔多斯北部隆起的高平原地区由于气候干旱,长期受风力侵蚀,形成众多的新月形流动沙丘和半固定、固定沙地。北部有库布齐沙漠,南部有毛乌素沙地,东部为黄土丘陵。库布齐沙漠为延伸在黄河南岸的东西带状沙漠,大部分流动和半流动沙丘边沿水分较好。毛乌素沙地多为固定和半固定沙丘,水分条件较好,形成了沙丘间灌草地。
2.煤炭赋存的地质环境
鄂尔多斯盆地煤炭资源丰富,已探明储量近4000亿t,占全国总储量的39%。含煤地层包括石炭系、二叠系、三叠系和中下侏罗统的延安组。
(1)侏罗纪煤田
含煤岩系为下中侏罗统的延安组,由砂、泥岩类及煤层组成,其中泥岩、粉砂岩约占70%左右,透水性弱,其上覆直罗组、下伏富县组均为弱透水岩层。侏罗纪地层中地下水的补给、径流条件差,以风化裂隙为主,构造裂隙不很发育,风化带深度约40~60m,风化带以下岩层的富水性很快衰减。矿井涌水量在一定深度后不仅不再随开采深度的增加而增大,而且会减少,风化带以下地下水径流滞缓,水质很差,矿化度高。矿床水文地质类型一般属水文地质条件简单的裂隙充水型。但在有第四系松散砂层(萨拉乌苏组)广泛分布及烧变岩分布区,水文地质条件往往变得比较复杂,特别在开采浅部煤层时、可能形成比较严重的水文地质和地质环境问题。按照矿井充水强度及水文地质条件的差异,可将侏罗纪煤田划分为4个水文地质分区:①黄土高原梁峁区。主要分布于盆地北部。区内地形切割强烈,上部无松散岩层覆盖或砂层巢零星分布,降水量少而集中,不利于地下水的补给与汇集,岩层富水微弱,矿床充水以大气降水为主,矿井涌水量很小,矿床水文地质条件简单。②烧变岩分布区。沿主要煤层走向呈带状分布,深度一般在60m以浅,宽度受煤层层数、间距、倾角、地形等因素控制。岩层空隙发育,透水性能好,其富水性取决于补给面积和含水层被沟谷切割程度,当分布面积较大或上覆有较广泛的第四纪砂层时,富水性较强,对浅部煤层开采有影响,也常是当地重要的供水水源。③第四系砂层覆盖区。砂层出露于地面且广泛覆盖于煤系之上,厚度数米至数十米,甚至更厚。区内大气降水虽然较少,但砂层的入渗条件很好,可以在大范围内获得大气降水的就近渗入补给,然后汇集到砂层厚度较大且古地形低洼处,以泉或蒸发的形式排泄,在矿井开采浅部煤层时常是最主要的充水水源,可能出现涌水、涌砂问题。该区浅部煤层开采矿床水文地质条件中等至复杂居多。砂层水和烧变岩水往往有密切的水力联系,赋存有宝贵的水资源,但不适当的采煤和采水都可以导致大面积补给区的破坏和水质的污染及生态环境的恶化。因此,在煤田开发中应将采煤、保水和生态环境的保护作为一项系统工程统一规划。④一般地区。不用上述3个水文地质分区的其他地区。该区煤系地层地下水的补给条件不好,含水微弱,矿床水文地质条件属简单,少数中等,矿井涌水量多数为每小时1m3至数十立方米。
(2)陕北三叠纪煤田
该煤田位于盆地中部的黄土梁峁地区。地下水在黄土梁区接受大气降水的少量补给,在沟谷中排泄,径流浅,水量小,岩层富水性弱,风化带以下岩层富水性更弱,矿化度很高,水文地质条件多为简单,属裂隙充水矿床。
(3)石炭、二叠纪煤田
分布于盆地东、南、西部盆缘地区的石炭二叠纪煤田,煤系基底为奥陶、寒武系灰岩,是区域性的强含水层,煤系本身含水比较微弱,属裂隙-喀斯特充水矿床。其矿床水文地质条件的复杂程度,取决于煤系基底灰岩水是否成为向矿井充水的水源及其充水途径和方式。现分区叙述如下:①东部地区。包括准格尔煤田和河东煤田。煤系下伏灰岩强含水层的地下水位埋藏很深,常在许多矿区的可采煤层之下,煤系地层含水微弱,矿床水文地质条件简单,奥陶系灰岩水为矿区的主要供水水源。从长远看,当煤层开采延伸到奥陶系灰岩水位以下时,灰岩水将威胁到下部煤层的开采。②南部渭北煤田。奥灰水地下水位标高为380m左右,而煤层赋存标高从东至西逐渐始升。如在东部太原组煤层的开采普遍受到奥灰水的威胁,而西部铜川矿区的多数煤层则均赋存在灰岩地下水位以上。在渭北煤田,由于奥灰与煤系的接触关系为缓角度不整合,使得不同地区煤系下伏的灰岩岩性和富水性不同,形成不同的水文地质条件分区。380m水位标高以上的煤层,其矿床水文地质条件多为简单至中等,而380m水位标高以下的煤层,水文地质条件属中等至复杂。奥陶系、寒武系灰岩沿煤田南部边缘有部分山露或隐伏于第四系之下,接受大气降水直接或间接补给,灰岩和强径流带也沿煤田的南部边缘分布于浅部地区。故开采浅部煤层时,矿井涌水量大,开采深部煤层时突水的可能性增大,但水量则有可能减少。在韩城矿区北部,黄河水与灰岩水之间有一定的水力联系。灰岩水是当地工农业的最主要水源、要考虑矿坑水的综合利用和排供结合。③西部地区。煤系与奥陶系灰岩之间有厚度较大的羊虎沟组弱含水层存在,奥灰水不能进入矿井,煤系含水比较微弱,矿床水文地质条件多属以裂隙充水为主的简单至中等类型(王双明,1996)。
二、煤炭开发过程中的地质环境状况变化
煤炭开发引起的地质环境问题受矿山所处的自然地理环境、地形地貌、地层构造、水文气象、植被,以及矿产工业类型、开发方式等经济活动特征等因素的影响。目前鄂尔多斯盆地煤矿地质环境问题十分严重。地下开采和露天开采对矿区地质环境影响方式和程度不同。该区煤矿以地下开采为主,其产量约占煤炭产量的96%。尤以地下采煤导致的地质环境问题最为严重,主要地质环境问题以煤矿业导致的地质环境问题结果作为分类的主要原则,可以分为资源毁损、地质灾害和环境污染三大类型及众多的表现形式(表3-2)(徐友宁,2006)。
根据总结资料与实地调查,结合重点区大柳塔矿区及铜川矿区实际情况,我们重点介绍以下5个突出的地质环境问题:①地面塌陷及地裂缝;②煤矸石压占土地及污染水土环境;③地下水系统破坏及污染;④水土流失与土地沙化;⑤资源枯竭型矿业城市环境恶化。
1.地面塌陷与地裂缝
地下开采形成的地面塌陷、地裂缝造成耕地破坏,公路塌陷,铁轨扭曲,建筑物裂缝,以及洼地积水沿裂隙下渗引发矿井透水等事故。在干旱地区由于地表水系受到破坏,导致矿区生产、生活,以及农业用水发生困难。同时,还可诱发山地开裂形成滑坡。
表3-2 煤炭开采的主要地质环境问题
地面塌陷和地裂缝在大中型地下开采的煤矿区最为普遍,灾害也最为严重。如甘肃的华亭煤矿,宁夏的石嘴山、石炭井煤矿和陕西的渭北韩城—铜川,以及神府—东胜煤田矿区。
由于黄土高原人口密集,地面塌陷对土地的破坏主要是对农田的破坏。陕西渭北地区的铜川、韩城、蒲白、澄合等矿务局各矿区位于黄土台塬,该区是陕西渭北优质农业产区和我国优质苹果生产基地,这些国有大中型老煤矿区几十年地下开采导致了地面塌陷、地裂缝,以及山体开裂,成为西北地区煤矿开发对农业生产破坏最为严重地区之一。陕西省采空区地面塌陷总面积约110km2,主要分布于渭北及陕北煤矿区。不完全累计,1999年底,铜川矿区地面塌陷63.82km2,占到全省地面塌陷区55.38%,其中80%为耕地。煤矿区的地面塌陷最为严重,这是因为煤层厚度较金属矿体要大,过采区的空间较金属及其他非金属矿山要大得多,且上覆岩层多为松软的页岩、粉砂岩及泥质岩层。煤矿地表塌陷和地裂缝的范围及深度与采煤方法、工作面开采面积、采区回采率,以及煤层产状等多种因素有关。一般而言,埋深愈浅,开采面积越大,地面塌陷、裂缝范围及深度也越大。榆林神府矿区大砭窑煤矿开采5#煤层,煤层4~6m,埋深90~100m,1992年5月5日,矿井上方发生地面塌陷12000m2,陷落深度0.7m。宁夏石嘴山市石嘴山煤矿开采面积5.15km2,而塌陷面积已达6.97km2,是其开采面积的135%,形成深达8~20m地表塌陷凹地,部分地段的裂缝宽达1m。矿区铁路运输基地高出塌陷区10~20m,使得矿山企业每年用于铁路垫路费高达100万元,穿越矿区的109国道被迫改道。
陕西省煤矿采空区地面塌陷总面积约110km2(表3-3),主要分布于渭北及陕北煤矿区。其中铜川市老矿区因开采较早,地面塌陷比较严重,到1999年底,不完全统计其地面塌陷63.82km2,占到全省地面塌陷区55.38%,其中80%为耕地。而神木县近几年煤矿开发力度不断增大,加之煤层埋藏较浅,地面塌陷程度增大,截至2001年,该县乡镇煤矿造成地面塌陷达5.32km2。
表3-3 鄂尔多斯能源基地陕西境内煤矿区地面塌陷
(据西北地矿所)
陕西省渭北煤田的铜川、黄陵、合阳、白水、韩城各矿区、陕北神府煤田的大柳塔、大砭窑、洋桃瑁、沙川沟、刘占沟、新民矿等矿区,均出现有不同程度的地面塌陷、地裂缝及山体滑坡,造成大面积的农田被毁、房屋开裂、铁轨扭曲、公路塌陷、矿井涌水等。2001年7月,特大暴雨使黄陵店头陕煤建五处矿区仓村三组的1.2hm2耕地发生地面塌陷、地裂缝,地裂缝最宽可达15m,塌陷落差达7.45m,60%耕地已无法复垦,农田搁荒,预计经济损失达270万元。铜川煤矿区地裂缝5400余条,以王石凹煤矿为例,在1∶5000的地形图上填绘的裂缝就有70多条,总长度近7000余米。神府矿区大柳塔矿201工作面煤层埋藏浅,1995年7月10日开始回采,放顶后地表形成裂缝,实测裂缝区面积为5742.5m2。第一期开采计划完成后,预计未来大柳塔矿采空区总面积5.8hm2,可能发生地裂缝区域总面积约5.45hm2。裂缝区与采空区面积之比为0.94。目前塌陷面积达到7.7km2。20世纪90年代,甘肃窑街矿区矿井地面占地598.1hm2。地面塌陷20处共计443.54hm2,地面塌陷面积比80年代扩大了48.4%,每年以14.47hm2的速度扩大,10年间因塌陷引起的特大型山体滑坡等灾难性地质事故数起。80年代造成水土流失面积449~550hm2,90年代达到663~720hm2。
2.煤矸石压占土地及污染水土环境
煤矸石是采煤和选煤过程中的废弃物,通常占煤矿产量的12%~20%,是煤矿最大的固体废弃物之一,其堆积会压占土地植被。陕西黄陵店头地处黄土高原地带,小流域地区的森林植被良好,但是部分煤矿排放的煤矸石堆积在山坡上,压占了生长良好的杂木林。陕西韩城下峪口黄河滩地湿地芦苇茂密,生态环境良好,但是下峪口煤矿排放煤矸石填滩造地,却压占并破坏了黄河湿地生态资源与环境,应引起有关部门的高度重视。煤炭资源大面积连续开采,造成了难以恢复的地下水破坏,同时导致地表河流流量锐减,生态环境破坏。1997年以来,陕西神府煤田开发区已有包括窟野河在内的许多河流出现断流。
煤矸石堆积长期占压土地。截至2000年,铜川矿务局下属12个矿山,煤矸石累计堆存量1264.99万t,大小矸石山150余处,其中100万t以上的矸石山35处,矸石压占2.37km2。
堆积的矸石山易发生自燃,产生大量硫化氢等有害气体,对周边村民身体健康产生很大危害。据有关资料,每平方米矸石山自燃一昼夜可排放CO10.8kg,SO26.5kg,H2S和NO22kg等。依据国家卫生标准规定,居民区大气环境中有害物质的最高允许浓度SO2日均浓度为0.15mg/m3、H2S为0.01mg/m3,显然,煤矸石自燃区的大气环境污染超过了国家标准,必然危害居民身体健康。
陕西铜川矿务局下属共有13个矿井,其中6个矿井煤矸石堆存在自燃(图3-2),矸石山周围SO2,TSP,苯并芘等都严重超标,据有关资料在自燃矸石山周围工作过5年以上的职工患有不同程度的肺气肿。陕西韩城桑树坪矿矸石山自燃造成空气中SO2和CO2严重超标,其中SO2浓度平均超标16倍,CO2浓度平均超标20倍。在这种空气环境下,甚至发生了工人昏倒在排矸场的现象。
图3-2 铜川矿务局王石凹煤矿正在冒烟的矸石山
煤矸石不仅造成大气污染,矸石山淋滤水还会造成临近地表水源、地下水,以及矸石山下伏土壤的污染。本次调查在铜川矿务局金华山煤矿采集的矸石山淋滤水样,颜色发黑,经检测发现是酸性水,pH值为2.82,COD为812.5mg/L,悬浮物含量128.0mg/L,重金属含量汞、镉、铜、镍、锌、锰均超标;在三里洞煤矿采集的矸石山淋滤水pH值为1.77,COD为621.6mg/L,TDS含量达160.658g/L,水化学类型为Mg·SO4型;这些矸石山淋滤水流入地表水体或渗入土壤,都会造成一定程度的污染。
3.地下水系统破坏及污染
鄂尔多斯能源基地煤炭开采区大多为严重缺水地区。矿井疏干排水造成地下水均衡系统的破坏,地下水位下降,水量减少。煤矿酸性及高矿化度井水造成地下水污染,加剧了水资源危机。煤炭资源大面积连续开采,造成了难以恢复的地下水破坏,同时导致地表河流流量锐减,生态环境破坏。1997年以来,陕西神府煤田开发区的不少河流断流,如2000年窟野河断流75d,2001年断流106d。由于煤矿采空区裂缝遍布,最宽达2m多,局部地区地面下降2~3m,导致原流量达7344m3/d的双沟河已完全干涸,400多亩水田变为旱地,杨树等植被大片枯死。
陕西渭北铜川、蒲白、澄合和韩城等煤矿是矿井突水主要发生地,素有渭北“黑腰带”之称的铜川、蒲白、澄合、韩城四大煤矿区又是高瓦斯矿区,1975年5月11日,铜川矿务局焦坪煤矿前卫矿井发生重大瓦斯煤尘爆炸事故,死亡101人,受伤15人,全井造成严重破坏。2001年4月,铜川、韩城两起瓦斯爆炸造成86人死亡的重大恶性事故,社会影响极坏。
陕西省的矿井突水主要发生在渭北铜川、蒲白、澄合和韩城等煤矿区。1989年,上述4个矿务局27个煤矿31处自然矿井,受地下水威胁的矿井占32.3%。据不完全统计共计发生矿坑突水36次,其中1975~1982年该区发生奥灰岩土石事故29次,占其矿井突水事故地80.56%。该区矿井下水灾主要来源于奥灰岩岩溶水和古窑采空区积水。1960年1月19日,铜川矿务局李家塔煤矿发生老窑突水53476m3,淹没巷道18条,总长1880m,直接经济损失7142元,死亡14人。20世纪60年代以前,该区带主要矿井巷道还位于+380m水平面上,70年代后,蒲白、韩城、澄合等新建矿区部分开拓巷道位于+380m水平面之下。1974年以后,象山、马沟渠、桑树坪、董家河、权家河、二矿、马村矿相继发生奥灰岩突水事故29次,淹没巷道万余米,致被迫停产,重掘巷道的巨大损失,直接经济损失近2000万元。
宁夏石嘴山煤矿区因地面塌陷,地裂缝交错,地面低凹积水,地表水沿裂隙进入地下巷道,使矿区多次发生突水事件,造成人员伤亡和巨大的经济损失(表3-4)。
表3-4 宁夏石嘴山煤矿矿井突水一览表
陕西黄陵县店头沮水河两岸分布着十几家个体小煤矿,不顾后果在河道下采煤,在8km2范围内形成4处较大的塌陷区,均横跨沮水河床,地裂缝达20cm,最大塌陷区面积达1000m2以上,大片耕地塌陷,民房出现裂缝,饮水井水量和水质发生变化。1998年9月13日个体小煤矿牛武矿非法开采沮河河床保安煤柱,并越界穿过沮水河,同个体水沟小窑多处相互打通,发生矿井透水,最终导致苍村一号斜井西采区被淹,使陕西黄陵矿业公司一号煤矿主平硐在1999年“3.24”发生重大突水事故,涌水量瞬间增至800m3/h,迅速淹没了3条平硐。小煤窑无序采煤不仅造成自己淹井停产,也给黄陵矿业公司造成直接经济损失3401万元,间接经济损失3100万元。同时,沮水河河水在上游进入煤矿采空区后,又在下游报废小煤窑井口流出排入沮水河,给居民生产和生活带来了很大困难。黄陵个体煤矿无序开采诱发的矿井突水事故再一次说明采矿业的发展必须遵循可持续发展原则,合理布局,加强矿业秩序的日常监督管理,才能使整个采矿业沿着健康的轨道发展。
长期以来,由于技术水平所限和认识不足,矿井水被当作水害加以防治,矿井水被白白排掉而未加以综合利用和保护。2000年,西北地区国有矿井煤产量3785万t,平均吨煤排水量1.3t,其他矿井煤产量5209万t,平均吨煤排水量0.324t。西北地区的煤矿主要位于干旱、半干旱地区,矿区水资源匮乏,毫无节制的排水不仅大大破坏了地下水资源,增加了吨煤成本,而且还导致地面塌陷、地下水资源流失、水质恶化,还可能造成地下突然涌水淹井事故。
煤矿矿井水多属酸性水,未加处理直接排放,加剧了干旱地区矿山用水危机。陕西、宁夏、内蒙古部分矿井水pH值均小于6,陕西铜川李家塔矿井水pH值更低为3。酸性矿井水直接排放会破坏河流水生生物生存环境,抑制矿区植被生长。甘肃、宁夏、内蒙古西部大部分矿井及陕西中部和东部等矿井水是高矿化度水,一般矿化度均大于1000mg/L。
2002年7月在陕西渭北煤矿区的一些矿务局调查时发现,陕西白水部分矿山存在将坑道废水直接排入地下岩溶裂隙,导致岩溶水污染,此问题应引起有关部门的高度重视,尽快采取措施保护岩溶水,使地下水资源不受污染。
4.水土流失与土地沙化
水土流失导致的土壤侵蚀是生态恶化的重要原因。黄土区、黄土与风沙过渡区的矿区水土流失量最大。陕西的铜川、韩城、神府煤矿区;宁夏的石嘴山、石炭井煤矿区;陕蒙神府—内蒙古东胜水土流失都十分严重。有关环境报告资料预测,陕西神府—内蒙古东胜矿区平均侵蚀模数按1.21万t/km2·a,面积按3024km2计算;年土壤侵蚀量为3659.04万t。据几个矿区开发前后不同时期的遥感资料以及河流、库坝、泥沙资料综合分析和计算表明,煤矿开采后水土流失量一般为开采前的2倍左右。内蒙古的乌达等矿区,侵蚀模数达10000~30000t/km2·a,是开采前水土流失量的3.0~4.5倍。陕西黄陵矿区建矿前土壤侵蚀模数为500t/km2·a,建矿5年后,土壤侵蚀模数已达1000t/km2·a。随着矿区的开发水土流失问题日益严重,不仅破坏了生态环境,还直接威胁矿区安全。例如,陕西神木中鸡煤矿由于矿渣倾入河道,占据河床2/3的面积,1984年8月雨季时河水受阻回流,造成特大淹井事故。
煤炭开采形成的地面塌陷造成浅层地下水系统破坏,使塌陷区植被枯死,为土地沙漠化的活化提供了条件。其次,露天煤矿、交通及天然气管道工程建设占用大量耕地,破坏植被,使表土疏松,使部分原已固定和半固定沙丘活化。戈壁沙漠区煤矿废渣堆放,风化加剧了土地沙化。
陕西神府煤田矿区大规模开发以及地方、个体沿河沟两岸乱挖滥采,破坏植被,导致沙土裸露,加剧水土流失和土地沙化。自80年代中期开发以来,毁坏耕地666.7hm2,堆放废渣6000多万t,破坏植被4946.7hm2,增加入黄泥沙2019万t。据“神府东胜矿区环境影响报告书”提供的预测结果,若不采取必要的防沙措施,矿区生产能力达到3000万t规模时,将新增沙漠化面积129.64km2,煤矿开发导致的沙漠化面积为自然发展产生沙漠化面积的1.53倍,新增入河泥砂量480万t,比现有条件下进河泥砂量增加13.7%。
5.煤炭资源枯竭与城市环境恶化
鄂尔多斯现有煤田有些开发较早,可以追溯到20世纪五六十年代。起初,由于技术落后,造成资源浪费,加之很多矿区达到服务年限,到现在已无资源可采。如铜川矿务局是1955年在旧同官煤矿的基础上发展起来的大型煤炭企业。全局在册职工30041人,离退休人员32691人,职工家属约21.6万人。由于生产矿井大多数是50年代末60年代初建成投产的,受当时地质条件和开采条件所限,所建矿井煤炭储量、井田范围、生产能力小,服务年限短。80年代以来先后有9对矿井报废,实施关闭,核减设计能力396万t。目前全局8对生产核定能力965万t/a,均无接续矿井。东区部分矿井资源枯竭,人多负担重,生产成本高,正在申请实施国家资源枯竭矿井关闭破产项目。生产发展接续问题日益突出,企业生存发展面临严峻挑战。矿业城市的可持续发展受到地方政府及相关学者的关注。煤炭资源枯竭的直接后果是矿业城市面临转型,大量问题需要解决,如人员安置、环境改善、寻找新的主打产业等。
三、煤炭开发引起的地质环境问题对煤炭开采的影响
大规模的煤炭开发活动不但极大地破坏了当地的地质环境和生态环境,也在很大程度上制约了煤炭开采活动的正常进行,主要表现在以下几个方面:
(1)采煤塌陷及地裂缝造成水资源量减少、地下水体污染,影响矿区采煤活动的正常运行
采煤塌陷造成含水层结构破坏,使原来水平径流为主的潜水,沿导水裂隙垂直渗漏,转化为矿坑水;在采矿疏干水过程中又被排出到地表,在总量上影响地下水资源。采煤塌陷形成塌陷坑、自上而下的贯通裂隙,使当地本就稀缺的地表水、地下水进入矿坑而被污染,使地下水质受到影响,进而影响到地下水的可用资源量。如在神府东胜矿区,采煤塌陷一方面使萨拉乌苏组含水层中地下水与细沙大量涌入矿坑,造成井下突水溃沙事故;另一方面矿坑排水需大量排放地下水,既浪费了宝贵的水资源,又破坏了矿区的水环境(张发旺,2007)。
另外,采煤塌陷对水环境造成影响的最重要因素是塌陷裂缝。其存在不但增加了包气带水分的蒸发,造成地表沟泉、河流等的干涸,而且增加了污染物的入渗通道,从而导致土壤水和地下水体的污染。
西北煤矿区水资源原本缺乏,再加上塌陷及地裂缝造成的可用水资源量的减少,使矿井用水、洗煤厂用水、矿区生活用水等均面临严峻挑战。
(2)煤层及煤矸石自燃不但浪费了大量煤炭资源,而且影响煤炭开采
鄂尔多斯盆地北部的侏罗系煤田分布区,煤层埋藏浅深度只有0~60m,并且气候干旱,植被稀少,形成了有利于煤田大规模自燃的气候条件。因此煤层及煤矸石自燃大面积分布,如乌海煤田、神东煤田等。煤层及煤矸石自燃不仅会烧掉宝贵的煤炭资源,并且会影响煤炭开采、污染空气,造成巨大经济损失。
(3)矿坑突水事故不但破坏了地表水和地下水资源,往往也会淹没矿井巷道,严重影响煤炭开采,造成重大人员伤亡和经济损失
在我国,大部分石炭-二叠系煤炭开采时会受到水量丰富的奥陶系灰岩水的威胁。由于水量巨大,流速快,水压高,奥陶系灰岩水造成的突水事故往往十分巨大,如1984年6月发生的开滦范各庄煤矿发生的世界罕见的特大奥陶系灰岩水突水事故,突水4d内把范各庄煤矿淹没,又突入相邻的吕家坨煤矿并将其全部淹没,并向另一相邻矿林西矿渗水,经过4个月才完成封堵工作,造成的经济损失达5亿元以上。在鄂尔多斯盆地,石炭-二叠系煤层主要分布在铜川、蒲白、澄合和韩城一线,历史上共发生矿坑突水事故40余次。如1960年1月19日铜川矿务局李家塔煤矿发生老窑突水53476m3,淹没巷道18条,死亡14人。
陕西黄陵县店头沮水河两岸个体小煤矿无序生产,1998年9月至1999年3月造成一系列突水事故,给黄陵矿业公司造成的直接经济损失就有3401万元,间接经济损失3100万元。
实现绿色矿业的主要途径
“绿色”是20世纪80年代末提出的一个生态环境新概念,最早应用于食品,即指无毒、无害的营养食品,包括食品本身和其生产过程。把“绿色”概念引入矿业,就产生了“绿色矿业”这一思想。绿色矿业是指在矿山环境扰动量小于区域环境容量前提下,实现矿产资源开发最优化和生态环境影响最小化,其本质是矿业和社会经济的可持续发展。矿产资源是人类生存与发展的物质基础,地质环境是人类生存与发展的空间场所。人类开发利用矿产资源,促进了社会发展,但同时也打破了矿区的地质环境平衡,经济发展为合理开发利用矿产资源与改善矿山生态环境提供了物质和技术基础。可见,资源、环境与经济三者是相互依存、相互影响的,既有相互促进、协同发展的正向关系,又有相互矛盾、相互制约的负向关系。工业革命以来大规模的开发和利用矿产资源,造成的生态破坏、环境污染和矿山地质灾害,严重危及着人类生存和发展的空间。
在一些发达国家,严格的环境保护政策是国家对矿产资源开发进行调节。在发展中国家或地区,如果只考虑当前经济的发展而过度地开发矿产资源,忽视环境保护,会使三者之间的矛盾激化,最后可能导致资源枯竭、生态恶化和经济停滞的严重后果。解决这一问题的出路在于正确处理资源开发、环境保护与经济发展三者之间的关系。
绿色矿业是在科学规划指导下和高新技术支撑下,既保护生态环境,又合理利用资源,最大限度获得经济效益的一项系统工程。现代科学技术为我们在西部矿产资源开发中实施绿色矿业战略奠定了坚实的基础。寿嘉华(2000)在“走绿色矿业之路”一文中指出:
(1)通过开发前的区域环境容量或承载力评价及矿业开发地质环境影响评价,建立环境评价指标体系和技术标准,开展环境区划,制定绿色矿业规划;
(2)通过技术创新,优化工艺流程,实现采、选、冶过程的小扰动、无毒害和少污染,提高资源综合利用率,促进矿业可持续发展;
(3)通过矿山环境治理和生态恢复,实现开发前后环境扰动的最小化和生态再造的最优化。
绿色矿业的核心是绿色开采,绿色开采包括了两个主要方面:①实现矿产资源的可持续利用;②最大程度减轻矿山环境的破坏和污染。现以煤炭资源开采为例,阐述实现绿色开采的重要性和艰难性,以及解决问题的主要途径。
5.3.2.1 确定合理的回采率
我国探明可采煤炭资源储量按国际对比口径计算,2001年为1145×108t,占世界总量的11.6%,居美国(2499.94×108t)和俄罗斯(1570.0×108t)之后列世界第三位,但人均拥有煤炭资源仅89.71t,为世界人均数值(9944.53/61.3010)160.59t的55.86%(《中国矿业年鉴》,2004)。我国煤炭资源分布不均。探明的资源量主要分布于北方,内蒙古、河北、山西、黑龙江、陕西、新疆6 省区拥有探明储量7903.01×108t,占全国探明资源总量的77.55%。至2002年底,我国共有煤炭企业2804家,从业人员408.61万人,年产原煤11.84×108t。与2001年相比,煤炭企业减少2953家,原煤产量增加1.33×108t,工业总产值增加293.01亿元,销售收入增加336.14亿元。山西、山东、内蒙古、河南、陕西、安徽、河北、黑龙江和辽宁等9个省区原煤产量合计占总产量的72.02%。综上所述,我国煤炭资源总量多,但人均占有量少,地理分布不均,东部和南方是消耗煤炭的大户,但煤炭资源和产量较少。
我国煤炭业的另一特征是可采储量占探明储量比重不大。按世界能源委员会定义的可采储量只有1145×108t,约占已探明储量的11.45%,已探明储量与可采储量的比为8.73:1,即每增加约9×108t的探明储量,才能增加1×108t的可采储量。因此,煤矿回采率是我国煤炭业发展的一个重要指标,关系到这一行业的可持续发展。国土资源部规划司提出了2005年不同井型煤矿回采率建议指标:大型矿、中型矿和小型矿相应为55%、45%和35%。实际上我国大、中型矿的回采率是40%~50%,集体、个体小矿只有10%~15%。国际上煤炭的总回采率为70%~80%,我国与国际水平相差甚远。集体、个体小矿回采率只有15%,与政府部门的建议指标35%也有很大差距。显然,小矿存在着回采率低、采掘方式不合理、不珍惜煤炭这一不可再生资源的现象,资源损失浪费严重,在空间上没有实现合理开采,在时间上无形损害了后代人对资源的需求。就国情而言,小矿的存在有利于边角煤炭资源的利用,缓解煤炭资源供需矛盾,吸纳社会闲散资金,吸纳大量农村劳动力,在某种程度上促进了地方经济的发展。从2002年年产原煤3×104t以下的小煤矿的产量与大、中型矿山产量基本持平(表5-1)。
表5-1 2002年煤炭企业规模、产量及产值
我国大、中型煤矿的回采率与国外相比有很大的差距,小矿的实际回采率与政府部门推荐的指标值差距亦很大,因此,在提高煤炭资源回采率方面大、中、小型煤矿均有很大的潜力可挖。但普遍存在的事实是:煤炭企业提高回采率潜力的动力明显不足,其根源在于,没有引入商品市场经济的法则。由于历史原因,我国绝大多数矿山企业系无偿或低价占有国家煤炭资源,采用相对落后的开采技术和设备能降低采煤成本,而这必然导致回采率低,但市场上无论大矿、小矿,煤炭售价都相同,为追求最大利润,企业就缺乏改进开采技术及设备、提高回采率的原动力。
为分析方便,设定以下符号所代表的含义:T为矿井服务年限(a),Z为矿井可采储量(104t),K为矿井回采率(%),A为矿井年产量(万元);S为吨煤利润(元),R为吨煤销售价(元),W为吨煤综合成本(元),Q为吨煤开采成本(元),P为吨煤资源成本(元),B为矿井资源总费用(元)。
矿井服务年限T、吨煤利润S和吨煤综合成本W的计算如下(↓表示下降,↑表示增加):
中国西北地区矿山环境地质问题调查与评价
中国西北地区矿山环境地质问题调查与评价
由式(5-1)可知,在矿井可采储量Z和矿井年产量A一定的情况下,回采率K下降,必然缩短矿井服务年限T,而T的缩短使矿井固定资产折旧及井巷工程等投资费用在吨煤成本中摊值增大,即开采成本Q稍有上升。由式(5-2)可见,在吨煤销售价R不变的情况下,这将引起吨煤利润下降。显然,回采率低在很大程度上是因为采用了导致较大煤层厚度损失和面积损失的开采技术和设备,这又能降低开采费用Q,开采费用降低引起吨煤综合成本W下降,当开采成本降低幅度大于式(5-1)所示开采成本增大幅度时,在市场售价R不变的情况下,矿井利润S增大(图5-2中Q=f(K)曲线所示)。由式(5-3)可知,矿井资源总费用B一定时,吨煤资源费P是随回采率K增大而减小的。式(5-2)表明,吨煤资源费P减少即可使吨煤成本W下降,如图5-2中P=f(K)曲线所示。
图5-2 吨煤成本与回采率的关系
吨煤成本曲线即 Q=f(K)和P=f(K)的合成曲线W=Q+P也是回采率K的函数,有一个最低点,即吨煤成本最小的点。本例中该点对应的回采率为60%,当考虑了开采成本和资源成本时,即该矿井回采率为60%时,能获得最大利润。有关行业主管部门在给定某煤矿规定的回采率时,也要考虑井型和煤层地质条件,在这两个前提条件之下,就能确定Q=f(K)和P=f(K)的两条曲线形态,由这两条曲线也就可以确定其合成曲线。合成曲线的最低点所对应的回采率K即为获得最大利润的点(吨煤成本最小)。这应该是国家和企业共同追求的有利于体现煤炭资源可持续利用价值的回采率,只有达到这一回采率才有利于企业获得较大利润。
资料显示,目前我国煤矿的回采率平均只有35%,一些乡镇煤矿回采率仅为15%。其他资源在开采和使用中的浪费现象也触目惊心。资源开采和使用价格低廉是其“罪魁祸首”。
我国矿产资源属于国家所有,但国家实际上并不直接占有资源,一方面是国有企业代表国家占有资源,通过向国家缴纳税收和利润的方式体现矿产所有者的利益;另一方面,是地方政府代表国家占有资源,地方政府通过允许集体或者其他性质的小企业采矿的形式,收取税收和管理费来获得利益。
赋税水平方面,我国矿产资源补偿费平均费率为1.18%,而国外与我国矿产资源性质基本相似的费率一般为2%到8%(我国煤炭行业资源税额为0.3~0.5元/t)。廉价的资源除了导致滥挖严重、开采使用浪费、破坏环境恶果外,还直接导致了国家利益受损。显然,重新制定煤炭资源费标准,有助于煤矿回采率的提高,有助于减轻煤矿开采活动中滥挖严重、开采使用浪费和破坏环境的不良现象,从而促进煤炭资源开发的可持续发展。
5.3.2.2 地质环境保护投入的最佳经济方法
煤炭开采过程中矿井水直接排放会造成地表水污染,煤矸石长久堆存会占压土地资源,矸石自燃及大风扬尘、大气降雨淋溶等会污染矿区大气、地表水、地下水和土壤环境。目前,国内外都是用支付补偿费的形式来平衡矿山开采对环境的损害。在俄罗斯,达标排污量的补偿费摊入吨煤成本,而超标排污量的补偿则直接影响纯煤利润。法国学者提出,环保投入应取得最大的经济效益。用图5-3来说明排污损失费及防治排污费与损失程度间的关系,排放某污染物的损失费以D表示,防治污染物排放的措施和设备费以P表示,这两种值都是该污染程度N的函数。损失费D与污染程度N的关系曲线D(N)和防治费P与污染程度N的关系曲线P(N)是典型的曲线函数,这两个函数曲线增长和减小的方向相反。显然,当污染程度最大时,P(N)=0,即未采取措施时,环境污染程度最大,相当于横坐标所示污染程度100%,最大防治污染费应该是实际污染程度为零时的值,在这种情况下,实际上P(N)值将等于最大损失值D(N)(无预防污染措施时)。因而,函数P(N)和D(N)图示曲线,实际上从纵坐标轴上同一水平开始,即防治污染费和污染损失费均从“零”处开始。以此为假设,可进行直观合理的分析,这两条曲线P(N)和D(N)相对于过交点K,与平行于纵坐标轴的直线对称,该直线与横坐标轴交点N0所示的污染程度,在数学上看最为有利,也就是说达到这一污染所用的防污染费P(N)和污染带来的损失费D(N)之和P(N)+D(N)值为最小。这一直观的关系是合理解决这类环保经济问题的基础。一方面有效地保护了生态环境,另一方面又能使防治污染费和污染带来的损失费之和最小,这对企业是有吸引力的。
图5-3 合理防治费用及污染程度关系图
煤炭开采的环境保护工作,取决于煤炭资源的合理开采和加工技术工艺。工艺合理,能够保护资源,提高煤矸石、废水、热能循环利用程度,变废为宝,化害为利,从而避免或减少煤矿开采加工过程对环境的负面影响。为有效地减小开采对矿山环境的负面影响,就要在采煤主要技术工艺、废物资源化利用方面,建立相互关联的生态技术系统,如采用不排矸、少排矸采煤工艺或煤矸石直接充填塌陷区,矿井水资源化利用等技术工艺。通过组建煤业热电集团公司,电厂利用煤矸石发电、矿井水综合利用,煤矿利用井口电站粉煤灰浆充填井下采空区、塌陷区,减少废渣堆放压占土地、节省塌陷区复垦工程费等。
煤炭的国内外现状研究
2011年一季度,中国煤炭工业经济运行情况平稳。全国原煤产量完成7.92亿t,同比增长8.3%;煤炭销量7.6亿t,同比增长6.8%;煤炭价格波动不大,安全生产状况稳定好转。
中国煤炭工业发展的前景展望
在今后相当长的时间内,煤炭仍然是中国的主要能源
煤炭是中国的主要能源。中国能源资源条件的特点是富煤、少油、缺气,这就决定了在未来较长时期内,煤炭在中国能源结构中仍将居主体地位。今后五年,我国明确提出要合理控制能源消费总量,明确总量控制目标和分解落实机制。通过严格控制能源消费总量达到加快转变经济发展方式的目的。随着经济结构的战略性调整以及水电、核电、风电等新能源和可再生能源的发展,非化石能源消费比例提高将从8.3%提高到11.4%,提高3.1个百分点,煤炭消费比重将下降,增幅将回落,但煤炭总量仍将保持一定幅度的增长。煤炭在中国主体能源的地位很难改变。
根据国民经济"十二五"规划,在全国GDP增长7%的条件下,预计到2015年中国煤炭生产量将达到38亿t以上,年煤炭净进口量2亿t左右,煤炭消费量将达到40亿t左右。
"十二五"(2011-2015)时期是中国煤炭工业由量的增长向质的提升转型发展的关键时期
"十二五"时期,中国仍然处在经济社会发展的重要战略机遇期,也是中国煤炭工业转型发展的关键时期。
随着中国工业化、城市化、市场化和国际化快速发展,能源需求将继续增长,对煤炭工业发展提出了新的更高的要求。中国煤炭行业高度关注和顺应世界经济和能源工业发展的大趋势,在总结以往煤炭工业发展经验的基础上,将选择适合自己国情和时代特征的科学发展道路。
中国政府高度关注和支持煤炭工业发展,确立了"煤为基础,多元发展"能源发展方针,颁布了《国务院关于促进煤炭工业健康发展的若干意见》,发布了《煤炭产业政策》,制定了《"十二五"煤炭工业发展规划(2011-2015)》,为今后一个时期煤炭工业的发展指明了方向。
展望未来,在世界经济发展的大背景下,生态环境保护、发展非化石能源和低碳经济、节能减排、资源综合开发和利用等已成为了国际社会普遍关注的焦点之一。中国煤炭工业发展依然面临着资源约束强化、环境压力加大、转变发展方式任务繁重、安全生产难度增加等挑战。坚持科学发展,转变经济发展方式,走新型工业化道路,加快推进煤炭工业由量的增长向质的提高转变,实现节约发展、清洁发展、安全发展和可持续发展,显得尤为重要。
"十二五"时期中国煤炭工业发展的总体要求是:坚持发展先进生产力,提高劳动者素质,坚持规模化、现代化,走工业化和信息化相融合的发展道路;把增强科技进步和组织创新能力,建设资源节约型、环境友好型、安全有保障、经济效益好、健康可持续发展的新型煤炭工业体系,真正摆在煤炭工业发展战略的核心位置。
中国煤炭工业总体开发布局将大规模地由中东部地区向西部地区转移
"十二五"时期中国煤炭工业发展的重点要求是:按照科学布局、集约发展、安全生产、清洁利用、保护环境的发展方针,以转变发展方式为主线,以科技进步为支撑,以改革开放为动力,发展具有国际竞争力的大型煤炭企业集团,建设大型煤炭基地,建设大型现代化煤矿(露天),保障煤炭稳定供应,改善矿区生态面貌,提高矿工生活水平,促进煤炭工业可持续发展。
"十二五"期间,中国将合理控制能源消费总量,坚持节约优先、立足国内、多元发展、保护环境、加强国际互利合作、调整优化能源发展战略,构建安全、稳定、经济、清洁的现代能源产业体系。统筹规划全国能源开发布局和建设重点,建设山西。鄂尔多斯盆地、内蒙古东部地区、西南地区和新疆五大国家综合能源基地。按照"控制东部、稳定西部、开发西部"的指导思想,从今年起,煤炭开发向西部地区转移的趋势更加明显。西部陕、蒙、宁和新疆等省区煤炭资源丰富,开发潜力大,主要运煤大通道正在建设或规划建设,为西部大规模开发布局创造了条件。一大批现代化矿井(露天)将重点在西部地区动工,将加快陕北、黄陇、神东、蒙东、宁东煤炭基地建设,稳步推进晋北、晋东、云贵煤炭基地建设,启动新疆煤炭基地建设,依托以上煤炭基地建设若干个大型煤电基地。
"十二五"期间中国煤炭工业转型发展的基本路径是努力实现"五个"转变
由产量速度型向质量效益型转变。抓住结构调整、转变发展方式的有利时机,大力推进煤炭企业兼并重组和资源整合,创新发展模式、大力减少煤矿和工作面个数,提高单井产量,合理集中生产,努力实现煤炭行业由产量速度型向质量效益型转变,提高科学发展能力。
实现由粗放的煤炭开采向以高新技术为支撑的安全高效开采转变。加大煤炭行业重大安全基础理论和关键性技术研究,推动煤矿由传统的生产方式向大型化、现代化、自动化、信息化的方向转变,大型煤矿形成安全高效集约化发展模式,中小煤矿机械化水平明显提高。煤炭企业管理由经验决策转向信息化、系统化、科学化决策上来,推动煤炭生产向安全高效,集约化方向发展。
煤矿安全实现由控制伤亡事故向职业安全健康转变。坚持以安全生产为前提,把煤炭工业发展建立在煤矿安全状况不断改善、全行业职业安全健康水平不断提高的基础上,实现煤矿安全生产的明显好转并向根本好转迈进。
实现由单一煤炭生产向煤炭资源综合利用、深加工方向转变。结合我国煤炭资源开发与消费布局特点,以资源开发为龙头,发展新兴产业,推动煤炭清洁高效利用,提升煤炭价值空间,推动煤炭上下游产业一体化发展,特别是推进煤电一体化发展,推进煤炭深加工转化,促进煤炭产业升级。
实现由资源环境制约向生态环境友好型转变。坚持循环经济发展理念,推动资源综合利用和节能减排工作,加快科技创新和新技术研发,推进煤矿绿色开采,建立矿区生态环境修复与治理机制、以最少的资源和环境消耗,支撑国民经济又好又快发展。