bollm源码传统版(boll源代码)
本文目录一览:
java如何做高级爬虫
下面说明知乎爬虫的源码和涉及主要技术点:
(1)程序package组织
(2)模拟登录(爬虫主要技术点1)
要爬去需要登录的网站数据,模拟登录是必要可少的一步,而且往往是难点。知乎爬虫的模拟登录可以做一个很好的案例。要实现一个网站的模拟登录,需要两大步骤是:(1)对登录的请求过程进行分析,找到登录的关键请求和步骤,分析工具可以有IE自带(快捷键F12)、Fiddler、HttpWatcher;(2)编写代码模拟登录的过程。
(3)网页下载(爬虫主要技术点2)
模拟登录后,便可下载目标网页html了。知乎爬虫基于HttpClient写了一个网络连接线程池,并且封装了常用的get和post两种网页下载的方法。
(4)自动获取网页编码(爬虫主要技术点3)
自动获取网页编码是确保下载网页html不出现乱码的前提。知乎爬虫中提供方法可以解决绝大部分乱码下载网页乱码问题。
(5)网页解析和提取(爬虫主要技术点4)
使用Java写爬虫,常见的网页解析和提取方法有两种:利用开源Jar包Jsoup和正则。一般来说,Jsoup就可以解决问题,极少出现Jsoup不能解析和提取的情况。Jsoup强大功能,使得解析和提取异常简单。知乎爬虫采用的就是Jsoup。 ...展开下面说明知乎爬虫的源码和涉及主要技术点:
(1)程序package组织
(2)模拟登录(爬虫主要技术点1)
要爬去需要登录的网站数据,模拟登录是必要可少的一步,而且往往是难点。知乎爬虫的模拟登录可以做一个很好的案例。要实现一个网站的模拟登录,需要两大步骤是:(1)对登录的请求过程进行分析,找到登录的关键请求和步骤,分析工具可以有IE自带(快捷键F12)、Fiddler、HttpWatcher;(2)编写代码模拟登录的过程。
(3)网页下载(爬虫主要技术点2)
模拟登录后,便可下载目标网页html了。知乎爬虫基于HttpClient写了一个网络连接线程池,并且封装了常用的get和post两种网页下载的方法。
(4)自动获取网页编码(爬虫主要技术点3)
自动获取网页编码是确保下载网页html不出现乱码的前提。知乎爬虫中提供方法可以解决绝大部分乱码下载网页乱码问题。
(5)网页解析和提取(爬虫主要技术点4)
使用Java写爬虫,常见的网页解析和提取方法有两种:利用开源Jar包Jsoup和正则。一般来说,Jsoup就可以解决问题,极少出现Jsoup不能解析和提取的情况。Jsoup强大功能,使得解析和提取异常简单。知乎爬虫采用的就是Jsoup。
(6)正则匹配与提取(爬虫主要技术点5)
虽然知乎爬虫采用Jsoup来进行网页解析,但是仍然封装了正则匹配与提取数据的方法,因为正则还可以做其他的事情,如在知乎爬虫中使用正则来进行url地址的过滤和判断。
(7)数据去重(爬虫主要技术点6)
对于爬虫,根据场景不同,可以有不同的去重方案。(1)少量数据,比如几万或者十几万条的情况,使用Map或Set便可;(2)中量数据,比如几百万或者上千万,使用BloomFilter(著名的布隆过滤器)可以解决;(3)大量数据,上亿或者几十亿,Redis可以解决。知乎爬虫给出了BloomFilter的实现,但是采用的Redis进行去重。
(8)设计模式等Java高级编程实践
除了以上爬虫主要的技术点之外,知乎爬虫的实现还涉及多种设计模式,主要有链模式、单例模式、组合模式等,同时还使用了Java反射。除了学习爬虫技术,这对学习设计模式和Java反射机制也是一个不错的案例。
4. 一些抓取结果展示收起
java 网络爬虫怎么实现
网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成。
传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。对于垂直搜索来说,聚焦爬虫,即有针对性地爬取特定主题网页的爬虫,更为适合。
以下是一个使用java实现的简单爬虫核心代码:
public void crawl() throws Throwable {
while (continueCrawling()) {
CrawlerUrl url = getNextUrl(); //获取待爬取队列中的下一个URL
if (url != null) {
printCrawlInfo();
String content = getContent(url); //获取URL的文本信息
//聚焦爬虫只爬取与主题内容相关的网页,这里采用正则匹配简单处理
if (isContentRelevant(content, this.regexpSearchPattern)) {
saveContent(url, content); //保存网页至本地
//获取网页内容中的链接,并放入待爬取队列中
Collection urlStrings = extractUrls(content, url);
addUrlsToUrlQueue(url, urlStrings);
} else {
System.out.println(url + " is not relevant ignoring ...");
}
//延时防止被对方屏蔽
Thread.sleep(this.delayBetweenUrls);
}
}
closeOutputStream();
}
private CrawlerUrl getNextUrl() throws Throwable {
CrawlerUrl nextUrl = null;
while ((nextUrl == null) (!urlQueue.isEmpty())) {
CrawlerUrl crawlerUrl = this.urlQueue.remove();
//doWeHavePermissionToVisit:是否有权限访问该URL,友好的爬虫会根据网站提供的"Robot.txt"中配置的规则进行爬取
//isUrlAlreadyVisited:URL是否访问过,大型的搜索引擎往往采用BloomFilter进行排重,这里简单使用HashMap
//isDepthAcceptable:是否达到指定的深度上限。爬虫一般采取广度优先的方式。一些网站会构建爬虫陷阱(自动生成一些无效链接使爬虫陷入死循环),采用深度限制加以避免
if (doWeHavePermissionToVisit(crawlerUrl)
(!isUrlAlreadyVisited(crawlerUrl))
isDepthAcceptable(crawlerUrl)) {
nextUrl = crawlerUrl;
// System.out.println("Next url to be visited is " + nextUrl);
}
}
return nextUrl;
}
private String getContent(CrawlerUrl url) throws Throwable {
//HttpClient4.1的调用与之前的方式不同
HttpClient client = new DefaultHttpClient();
HttpGet httpGet = new HttpGet(url.getUrlString());
StringBuffer strBuf = new StringBuffer();
HttpResponse response = client.execute(httpGet);
if (HttpStatus.SC_OK == response.getStatusLine().getStatusCode()) {
HttpEntity entity = response.getEntity();
if (entity != null) {
BufferedReader reader = new BufferedReader(
new InputStreamReader(entity.getContent(), "UTF-8"));
String line = null;
if (entity.getContentLength() 0) {
strBuf = new StringBuffer((int) entity.getContentLength());
while ((line = reader.readLine()) != null) {
strBuf.append(line);
}
}
}
if (entity != null) {
nsumeContent();
}
}
//将url标记为已访问
markUrlAsVisited(url);
return strBuf.toString();
}
public static boolean isContentRelevant(String content,
Pattern regexpPattern) {
boolean retValue = false;
if (content != null) {
//是否符合正则表达式的条件
Matcher m = regexpPattern.matcher(content.toLowerCase());
retValue = m.find();
}
return retValue;
}
public List extractUrls(String text, CrawlerUrl crawlerUrl) {
Map urlMap = new HashMap();
extractHttpUrls(urlMap, text);
extractRelativeUrls(urlMap, text, crawlerUrl);
return new ArrayList(urlMap.keySet());
}
private void extractHttpUrls(Map urlMap, String text) {
Matcher m = (text);
while (m.find()) {
String url = m.group();
String[] terms = url.split("a href=\"");
for (String term : terms) {
// System.out.println("Term = " + term);
if (term.startsWith("http")) {
int index = term.indexOf("\"");
if (index 0) {
term = term.substring(0, index);
}
urlMap.put(term, term);
System.out.println("Hyperlink: " + term);
}
}
}
}
private void extractRelativeUrls(Map urlMap, String text,
CrawlerUrl crawlerUrl) {
Matcher m = relativeRegexp.matcher(text);
URL textURL = crawlerUrl.getURL();
String host = textURL.getHost();
while (m.find()) {
String url = m.group();
String[] terms = url.split("a href=\"");
for (String term : terms) {
if (term.startsWith("/")) {
int index = term.indexOf("\"");
if (index 0) {
term = term.substring(0, index);
}
String s = //" + host + term;
urlMap.put(s, s);
System.out.println("Relative url: " + s);
}
}
}
}
public static void main(String[] args) {
try {
String url = "";
Queue urlQueue = new LinkedList();
String regexp = "java";
urlQueue.add(new CrawlerUrl(url, 0));
NaiveCrawler crawler = new NaiveCrawler(urlQueue, 100, 5, 1000L,
regexp);
// boolean allowCrawl = crawler.areWeAllowedToVisit(url);
// System.out.println("Allowed to crawl: " + url + " " +
// allowCrawl);
crawler.crawl();
} catch (Throwable t) {
System.out.println(t.toString());
t.printStackTrace();
}
}
如何评价慕课网课程《Python分布式爬虫打造搜索引擎 》
听说还可以,我没有购买,所以不清楚
课程大纲
说真的,你再也没有理由学不会爬虫了
从0开始讲解爬虫基本原理讲精讲透最流行爬虫框架Scrapy从单机爬虫到分布式爬虫爬取知名网站真实数据打造自己的搜索引擎从0讲解爬虫基本原理,对爬虫中所需要用到的知识点进行梳理,从搭建开发环境、设计数据库开始,通过爬取三个知名网站的真实数据,带你由浅入深的掌握Scrapy原理、各模块使用、组件开发,Scrapy的进阶开发以及反爬虫的策略
彻底掌握Scrapy之后,带你基于Scrapy、Redis、elasticsearch和django打造一个完整的搜索引擎网站
大纲:第1章 课程介绍介绍课程目标、通过课程能学习到的内容、和系统开发前需要具备的知识
第2章 windows下搭建开发环境介绍项目开发需要安装的开发软件、 python虚拟virtualenv和 virtualenvwrapper的安装和使用、 最后介绍pycharm和navicat的简单使用
第3章 爬虫基础知识回顾介绍爬虫开发中需要用到的基础知识包括爬虫能做什么,正则表达式,深度优先和广度优先的算法及实现、爬虫url去重的策略、彻底弄清楚unicode和utf8编码的区别和应用。
第4章 scrapy爬取知名技术文章网站搭建scrapy的开发环境,本章介绍scrapy的常用命令以及工程目录结构分析,本章中也会详细的讲解xpath和css选择器的使用。然后通过scrapy提供的spider完成所有文章的爬取。然后详细讲解item以及item loader方式完成具体字段的提取后使用scrapy提供的pipeline分别将数据保存到json文件以及mysql数据库中。…
第5章 scrapy爬取知名问答网站本章主要完成网站的问题和回答的提取。本章除了分析出问答网站的网络请求以外还会分别通过requests和scrapy的FormRequest两种方式完成网站的模拟登录, 本章详细的分析了网站的网络请求并分别分析出了网站问题回答的api请求接口并将数据提取出来后保存到mysql中。…
第6章 通过CrawlSpider对招聘网站进行整站爬取本章完成招聘网站职位的数据表结构设计,并通过link extractor和rule的形式并配置CrawlSpider完成招聘网站所有职位的爬取,本章也会从源码的角度来分析CrawlSpider让大家对CrawlSpider有深入的理解。
第7章 Scrapy突破反爬虫的限制本章会从爬虫和反爬虫的斗争过程开始讲解,然后讲解scrapy的原理,然后通过随机切换user-agent和设置scrapy的ip代理的方式完成突破反爬虫的各种限制。本章也会详细介绍httpresponse和httprequest来详细的分析scrapy的功能,最后会通过云打码平台来完成在线验证码识别以及禁用cookie和访问频率来降低爬虫被屏蔽的可能性。…
第8章 scrapy进阶开发本章将讲解scrapy的更多高级特性,这些高级特性包括通过selenium和phantomjs实现动态网站数据的爬取以及将这二者集成到scrapy中、scrapy信号、自定义中间件、暂停和启动scrapy爬虫、scrapy的核心api、scrapy的telnet、scrapy的web service和scrapy的log配置和email发送等。 这些特性使得我们不仅只是可以通过scrapy来完成…
第9章 scrapy-redis分布式爬虫Scrapy-redis分布式爬虫的使用以及scrapy-redis的分布式爬虫的源码分析, 让大家可以根据自己的需求来修改源码以满足自己的需求。最后也会讲解如何将bloomfilter集成到scrapy-redis中。
第10章 elasticsearch搜索引擎的使用本章将讲解elasticsearch的安装和使用,将讲解elasticsearch的基本概念的介绍以及api的使用。本章也会讲解搜索引擎的原理并讲解elasticsearch-dsl的使用,最后讲解如何通过scrapy的pipeline将数据保存到elasticsearch中。
第11章 django搭建搜索网站本章讲解如何通过django快速搭建搜索网站, 本章也会讲解如何完成django与elasticsearch的搜索查询交互。
第12章 scrapyd部署scrapy爬虫本章主要通过scrapyd完成对scrapy爬虫的线上部署。
第13章 课程总结重新梳理一遍系统开发的整个过程, 让同学对系统和开发过程有一个更加直观的理解
关于二进制文件压缩问题
仔细读一下这个网页。基本理论全在这儿。
关于源代码在这个网页中,不过编译器是gcc,最好在linux环境下使用
如何准备互联网公司面试(算法相关)
书籍: 《算法导论》 这本是大部头,很多人都看不完。我本人也并没有看完,它跟了我这么多年,完全是属于常看常新的牛书。每一次看,都发现会有新的收获。比如,以前并不知道求K位数或者中位数有平均为O(n)复杂度的算法。看到了别的地方的参考资料,才知道,原来《算导》上专门有一小节讲这个内容。我基本上是本科比较集中的看了一遍,研一的时候又集中的看了一遍,才算是粗略的看完。但是其实,很多理论性的,以及图论一部分依然还是没有看完。个人推荐,先从简单的开始,挑选比较熟悉的一些偏重与数据结构方面的知识作为起点。这本书的习题非常重要,要是有时间,能够全部做完,那绝对是能够神功在手了。其实,集中把,第二部分(排序),第三部分(数据结构),第四部分(高级设计,我基本主要看动态规划和贪心),第五部分(高级数据结构,B树和二项堆,并差集),第六部分(图算法,最大流部分较难,自己可以看情况掌握)。这些部分可以先从算法本身开始,伪代码全部看懂。因为算法导论讲的很详细,而且有来龙去脉,基本不会有太大难度。数学证明,推荐大家掌握,但是,突击或者第一次,可以选择性的看看。我自己是重复看,才把证明看掉的。第一次看的时候,基本都跳过了。不过,证明和习题是精髓!希望如果有时间,一定要补回来。 《编程之美》《挑战编程》 这本书绝对是将全中国企业,或者说是一部分懒惰的企业面试题库提升了一个档次的一本神书。百度面我师兄的时候,我师兄直接把有一道题的最优解答出来了。但是,那个面试官显然是不知道最优解,一直在引导我师兄答出,这本书里面的第四个解。呵呵。书很不错。全部看一遍并不难。说个不好听的,可以背下来,而且相信我,基本上绝对有用!比如说,n!后面有多少个0。我相信,你们今年面试或者笔试,一定会碰到这道题。《挑战编程》大家可以自行考虑一下吧,这个完全是针对acm竞赛的,不过,看看题也不错。 《编程珠玑》 业界神书嘛。习题全部做完就是了。其实都是些小东西,但是,基本上一步步考察你的解决问题的能力。个人觉得,最常用的就是bit map做排序或者去重,拓展一下就是bloom filter,我当时都是在这本书里面看到的。 《算法技术手册》 这本书貌似出镜不多。书很薄,代码写的非常好,其实基本上全部都是基础算法和数据结构的实现。但是,它牛逼就在于,代码写的太好了,基本上,看一遍,绝对能背下来。面试基础很重要。基本上每个笔试或者面试,都会考一个100行以内的小程序。比如,给定一棵树,以及其中一个节点x,要求出这棵树的中序遍历序列中,x的后续节点,非递归实现。这种题非常简单,但是,真正写对的,其实并不多。《STL源码剖析》《C标准库》 都不厚。挑着看一遍非常舒服。特别是,看看STL每个数据结构迭代器类型啊,红黑书如何实现啊。C标准库,最常见的,比如strcpy()和memcpy()有什么区别啊。特别是,STL,看过之后,对泛型还是能有一定了解的。《C专家编程》《Effective c++》《深度探索C++对象模型》 第一本比较简单,可以当八卦书看。后两本其实也没啥好说的,其实都是些业界公认的牛书。我再重复一遍也没什么意义。但是,的确,考察基本上也就都是这么几本书上面的东西。基本上后两本主要侧重看c++对象方面的一些指示,特别是多态相关的。 《具体数学》《组合数学》 这两本其实可以看作修身养性的书。我当时是时间比较充裕的时候看完的。纯突击,大家就可以跳过了。但是,看完真的很有用。比如说,你们就可以跟面试官扯约瑟夫环的构造解了(这道题我觉得80%会遇到),直接推推公式,就不用写模拟代码了。《组合数学》也是,很多笔试一般会有些小智力题。不过,其实一般的题目,不看这本书也可以搞定。所以,这两本仅供参考。大家有兴趣的时候,可以翻翻。《Linux内核源码剖析》《Linux环境高级编程》…… 要是有机会,能看看最好。因为很多公司都会考察Linux相关的知识。最少要会点脚本,一些简单的Linux命令,以及正则表达式什么的。要是能聊聊内核源码或者驱动开发什么的东西,面试官肯定更加喜欢了。 知识: c c++ 首先要知道c和c++的区别。常考的有const的用法,一些生僻关键字比如extern,static的用法。 结构体与类的差别。类里面的字对齐问题,也就是说一个类到底有多大。以及一个空的类有多大。 虚函数以及多态相关的显然是重点。比如析构函数什么时候需要写成虚函数,构造函数是否可以是虚函数。 int a[10]; a 和 a的区别。 java java我并不熟。但是基本上肯定会考一些虚拟机相关的,以及GC等知识。然后,一般招聘的java程序员都会问到很多多线程编程的东西,以及hadoop!这个绝对是重点,淘宝绝对就是问这个的。 操作系统 这个看工作岗位的实际要求。基本的进程线程区别==肯定是会问到的。要是要求高一些,就会问很多多线程编程的问题。一些竞争死锁等基础知识,一些进程调度的算法,最近的kernel好像用的是CFS调度算法。shell编程,如何读取程序堆栈,写一些core dump的读取程序等等的。 数据结构 基本上所有的排序都要会写。与树有关的操作都要会些非递归版本。图一般考的不多。Flood-Fill算法等等。查找中位数。B树和红黑书最好要掌握,不用会写,能扯扯基本就行。KMP,这个很有可能考!而且的确真的不好懂。要是实在不行,背下来吧。哈哈。 网络 这个其实比较基础了。我个人网络方面的知识并不好。但是各种协议的基础,几次握手啊,一些操作系统的api实现到底是单工还是双工用的是TCP还是UDP。我个人网络纯粹靠拼RP。 数据库 数据库非常重要。基本的SQL肯定是要会的。最常见有一道题,inner join和out join的区别。MySQL是重点,基本上很多企业都是问这个。然后,百度扯多了会跟你扯MySQL引擎 的一些东西。这些我就不太懂了。要是能准备的话,或者说的确是做这方面的,就可以着重多准备下。 大规模数据处理这一块绝对是重点!而且本身不是一个系统的学科分支。但是,基本上几家大公司都会问这方面的。推荐先读读google那几篇论文。Page Rank那一篇,然后Map Reduce好像有几篇吧。Big Table什么的。推荐一个网址。这篇貌似是转载的,我以前找到的源地址现在找不到了。处理这一类问题基本上思路都是,哈希,map reduce以及bit map等等的。对了,推荐看一下外排序以及相关的败者树。这些都是大规模数据处理的一些典型问题。掌握了这些其实也就够了。这块有点屠龙之技的感觉,特别是对于学生,基本没有谁能有机会把这些代码实现出来。但是,没办法,这些公司就是喜欢考。看完那篇博客的,然后再自行查找一些资料,基本就够了。万变不离其中,而且,这些东西,没办法考那么难的。 推荐一个博客吧,作者收集了100+道面试题,并且全部给出了代码。把这个全部看完,基本上很多面试笔试,都是这些原题。 推荐Top Language里面的今天我们思考系列,好几年前的了。看大牛的思考过程,非常有帮助。希望自己能多想想再看答案。注意,google group好像有时被墙。 我把发芽网的题库版块也扫了一遍。 还有好多一时想不起来了。